

American Institute of Aeronautics and Astronautics

1

Graphical Techniques for Aircraft Dynamic Model
Development

Paul A. Barnard*
The MathWorks, Natick, MA 01760, USA

The complexity and expense of modern aircraft development programs drives the need
for mathematical models of aircraft dynamic behavior at all stages in a design cycle. The
limitations of graphical tools have meant that many system engineers have continued to rely
on the historical practice of developing models using FORTRAN or C, a tedious and error-
prone approach. Often, the reuse of models from stage to stage is limited or difficult,
creating the possibility that differences in the models could exist and leading to incorrect
results. Today’s well established, commercial off-the-shelf (COTS) products free designers
from the need to create, manage, and understand models written in textual programming
languages. These products provide a unified environment in which designers can model all
system dynamic characteristics accurately.

I. Introduction
Modeling and simulation tools have been in use since the 1920s, but until recently these tools were nongraphical

in nature and inadequate to capture the entire complex dynamic behavior of modern systems. As a result, many
designers continue to rely on traditional programming methods and mathematical models.

Developing models using FORTRAN or C is not only tedious but also error-prone; inadvertent changes can

occur when models are reused at different stages of the design, leading to incorrect results. Similarly, the documents
typically used to communicate requirements, specifications, test scenarios, and other content between groups
frequently are subject to ambiguity and misinterpretation.

With today’s well established, COTS graphical modeling tools, system designers no longer need to create,

manage, and understand models written in textual programming languages. All system dynamic characteristics can
be modeled accurately in a graphical, block diagram form. The model is also the documentation, which means that
designs can pass directly from the desktop to pilot training simulations without introducing errors and with minimal
manual effort. Since all models used in the design process are captured in one environment, the designer can readily
access them to repeat a previous analysis.

At a minimum, the model can be used as a specification that contains greater detail than text -based

specifications. When graphical models are used with Model-Based Design, they bring additional benefits.

Model-Based Design provides an efficient approach to four key elements of the development process:

requirements capture, design, implementation, and test. It is not necessary to use Model-Based Design for all these
elements to see measurable advantages, but when it is used to its fullest, Model-Based Design enables developers to
use a single model of their entire system—both the physical system and the controller—for data analysis, model
visualization, testing and validation, and product deployment, reducing error and saving development time and
costs.

II. Evolution of Graphical Techniques
Aircraft vehicle and system models are among the most challenging to develop. When systems are safety-

critical, the smallest error could cause catastrophic results. Because of the cost and complexity of these systems,
there is less opportunity to prototype than there is in other industries and more need to “get it right” the first time.

* Control Design Automation Marketing Director, 3 Apple Hill Drive

American Institute of Aeronautics and Astronautics

2

Unlike other systems, aircraft systems must account for multiple variables—wind, turbulence, weather, etc—and six
degrees of freedom that interact in sometimes unpredictable ways. The explosion of electrical systems, avionics, and
software adds to the complexity.

Simulation techniques evolved to address the unique challenges of dealing with complex engineering systems.

They have been particularly valuable in aircra ft development. Until 1950, these were exclusively analog techniques1.
With the development of digital computers in the mid-1950s, researchers began exploring digital simulation. By
1967, more than 23 different simulation programs were available, including MIMIC, from Wright Patterson;
DYNASAR, from General Electric; DSL/90; and CSMP, from IBM.

The CSSL report commissioned by the Simulation Council Inc was a major milestone, since it unified the

concepts and language structures of the available simulation programs. Several simulation products were based on
this standard, notably ACSL, which added to CSSL a macro language, built-in operators, control statements, and
constructs for combined continuous and discrete modeling.

The limited input-output facilities of early digital computers made it necessary to revert to textual representations

in the digital simulators. Prototype graphical environments were available by the mid-1970s, but graphical modeling
was not widely used until modern work stations and the PC with raster graphics became generally available.

Boeing’s simulator EASY5 was among the first modeling tools to be provided with a graphical user interface.

This was followed by SystemBuild (1984), VisSim (1990), Simulink® (1991), and the ACSL Graphical Modeller
(1993).

The new generation of graphical tools, such as the recently released Simulink 6, covers all aspects of design.

These tools are unified graphical modeling environments that include features such as interactive graphical editors,
graphical debuggers, and model analysis and diagnostics tools. They enable the designer to manage complex designs
by segmenting models into hierarchies of design components. They include a customizable set of block libraries that
allow engineers to accurately design, simulate, implement, and test control, signal processing, communications, and
other time-varying systems.

III. Using Graphical Tools in Model-Based Design
Model-Based Design is the most effective way to leverage the rich functionality provided by the new generation

of graphical tools. It can be used within any development process, such as the “V” diagram, waterfall or spiral
process. It covers all aspects of development, including specifications based on requirements, high-level (system-
level) design, low-level (subsystem-level) design, implementation, and testing (including verification and
validation).

At the heart of Model-Based Design is a model which is not only the repository for all information about the

concept and design but also the design imp lementation. At the heart of the model is an algorithm consisting of block
diagrams and state machines, each with specific timing and real-time execution characteristics. The algorithm is
often combined with environmental components to produce a complete executable system. Components include
sensors, actuators, mechanical devices, dynamic vehicles, electronics, and other physical elements that interact with
the algorithm.

The model starts as an idealized representation during the requirement capture, and then details are added as the

design progresses. Changes or corrections to the system requirements and specifications are easily incorporated into
the model, fully evaluated by simulation, and automatically reflected in the final real-time embedded software. The
model can be executed at any point, so ambiguity is reduced and errors can be detected and addressed earlier in the
process, when they are easier and less costly to fix. The result of the mo deling elaboration can lead directly to
automatically generated implementations, documentation, test scenarios and harnesses, and other art ifacts.

A. Requirements and Specifications
Using one of the new graphical modeling environments with Model-Based Design lets engineers coordinate,

track, communicate, and implement changes in design specifications throughout the development process. One can
access requirements stored in formal requirements management systems, such as DOORS, or in Microsoft Word,

American Institute of Aeronautics and Astronautics

3

Microsoft Excel, or HTML-formatted files, and associate them with blocks, subsystems, states, transitions,
functions, and truth tables within the models.

By associating these requirements with components of the model, designers can rapidly navigate and iterate

between requirements documentation, design, and model imple mentation. While documentation is no longer the
primary way to convey information in the design process, it still has important roles in Model-Based Design. The
model can be mapped to the requirements document so that it is clear what parts of a design are impacted if a
requirement changes (and what requirements are impacted if component design changes).

Documentation can also be used to communicate the system behavior and intents to others in the development

process, such as test engineers.

B. Design
Detailed software design begins once the system and software requirements have been specified using the

models. Graphical modeling tools like Simulink and Stateflow® work in a hierarchical fashion, enabling you to
manage complex models by breaking them down into functional elements of arbitrary size and structure. Designers
can achieve multiple levels of model fidelity by simply substituting one model element for another.

An open platform, such as that provided by MATLAB® and Simulink, can incorporate models of system

components and operating conditions implemented in C, FORTRAN, and specialized mo deling tools, such as
mechanical dynamics for a mechatronics system or noise models in a signal processing application. This provides
the designer with a richer context in which to design the system or subsystem.

The modeling tool can encapsulate legacy or highly optimized code, facilitating the reuse of that code into more

projects and enabling the use of Model-Based Design for projects in which only a portion of the system is being
redesigned or added.

A key to innovative design is to be able to quickly try, evaluate, and revise a design, often through rapid

prototyping. Because the models are executable and can also be quickly converted into code to run on a real-time
system, Model-Based Design is ideal for this phase. Rapid prototyping gives the designer a sandbox in which to try
new ideas and evaluate their effectiveness. It can be performed in several ways: by running the simulation on a host
computer in a non-real-time mode, by running a simulation on a system that executes in real time but bears little
resemblance to the eventual target, to enable the evaluation of different approaches, by running on a system very
similar to the eventual target or on the target itself.

C. Implementation
Because the same model is being elaborated, it is easier for someone working earlier in the process (for example,

an algorithm designer) to collaborate with the person doing the implementation (such as the software engineer) and
ensure that the implementation meets the goals of the design. Once the model is built and completely tested,
accurate real-time software for the production embedded design is automatically generated, saving time and
reducing costs.

Production code generation technology has evolved rapidly in recent years. This has resulted in more use of this

technology across embedded control and signal proces sing development. That increased usage, in turn, has driven
further refinements of the technology, including tool usability, efficiency of the generated code, flexibility for
tailoring the code format, and the ability to integrate automatically generated code with legacy and hand-generated
code.

Often process and methodology planners try to strictly enforce a boundary between rapid prototyping and

implementation so that the design approach and the addition of implementation details are not mixed. But there has
been increasing success in blurring that boundary. Organizations are finding that the ability to add implementation
details – and to do prototype implementations on the production target architecture, for example – enables them to
detect design flaws earlier in the development phase, when they are easier and less costly to fix2.

To be effective for both rapid prototyping and implementation, the development tools need to have the ability to

hold and utilize implementation details (for example, fixed-point representation) in the model and then allow the

American Institute of Aeronautics and Astronautics

4

user to ignore these details for simulation and analysis or to use them for implementation. Alternately, the platform
must have the ability to easily swap in representations of different fidelity (with or without the implementation
details).

D. Test
With Model-Based Design – and its use of executable models – tes ting happens every time a model is simulated,

and thus is an integrated aspect of the design process. This leads to a broader and more encompassing role for
verification and validation. (Verification confirms that work products properly reflect the requirements specified for
them. Validation confirms that the product, as provided, will fulfill its intended use.)

Model-Based Design fosters design flows that move validation into the early part of a software life cycle,

reducing the risk of late error detection. For example, rapid prototyping helps tune parameters and check the
functional behavior of an algorithm using a real-time computer and plant hardware.

One of the main tenets of Model-Based Design is that the model used for simulation needs to match the results

from the code execution. Advanced simulation environments such as Simulink allow engineers to create and
execute bit-true simulations; integrate high-performance MATLAB algorithms ; maintain target-independence
through out the design; maintain test-ready simulations; and provide direct implementation and verification paths to
a multitude of hardware options through automatic prototype and production code generation, co-simulation, and
hardware-in-the-loop prototyping.

Having good models of the design also impacts other aspects of testing. For example, running simulations of the

model provides information about model coverage that helps testing groups to determine which aspects of the
implementations are covered by equivalent tests. Test data and vectors can be generated for use in test harnesses,
either directly from the requirements or based on the design. This is particularly valuable for systems that contain
large amounts of logic, where designing test sequences is particularly difficult .

IV. Example of Graphical Tools Used Within Model-Based Design
In this example, the ideas presented above are applied to the development of a model and the associated control

system for the HL-20 lifting body. The HL-20 was developed as a backup system for the space shuttle and a crew
return vehicle for the international space station3. In one scenario, the HL-20 was to be used as a life-boat for the
crew of the international space station in the event of an emergency. In that case, this craft could be boarded and
automatically flown to a safe landing on earth at a conventional runway. For the purposes of this example, a control
system was developed from NASA specifications4 that implemented the final decent and landing profile for the
vehicle. The vehicle model includes the aerodynamics, control logic, fault management systems (FDIR), and engine
controls (FADEC). It also includes effects of the environment, such as wind profiles for the landing phase.

The development of a system as complex as the HL-20 is beyond the capability of one or two people. Solving

this control problem requires multiple design teams working together toward a common set of requirements and
specifications. Subsystems are developed separately in teams before being integrated together to meet higher-level
requirements. Teams designing controllers have to work with teams designing the physical system components.
Model-Based Design can be invaluable in solving this type of problem, meeting schedule milestones and system
performance.

Following is a description of how Model-Based Design was used in the development of this system. Particular

aspects of graphical modeling are applied to this problem. These aspects are common to other types of aerospace
systems as well. Simulink 6 and the Simulink product family were used as the basis for developing this example.
The top-level model for the HL-20 is shown in Fig. 1.

American Institute of Aeronautics and Astronautics

5

Figure 2. Aerospace Blockset provides aerospace component models for
initial configuration design and requirements development.

A. Requirements and Specification
During the requirements

definition phase of a project,
models can be invaluable in
capturing the thoughts and
ideas of the system
developers. The models can
help synthesize the system in a
way that is more realistic than
simply sketching ideas on
paper. In our example, we
used blocks from the
Aerospace Blockset, shown in
Fig. 2, to quickly prototype
ideas for modeling the HL-20.
This block library contains
simple models for common
aerospace systems, such as
equations of motion, flight
dynamics, propulsion,
actuators, GNC, and
environmental effects. With
these predefined blocks, it is
straightforward to quickly
create a system model from

Figure 1. The HL-20 system model expressed in Simulink.

American Institute of Aeronautics and Astronautics

6

Figure 3. Avionics subsystems capture the architecture of the system including
component signal specifications. Two avionics bays are modeled here with the left bay
containing redundant CPUs B and C.

which you can test out vehicle configurations and performance.

In the initial stages of the project, it is common for subsystem components to be incompletely defined. The RF

Signals subsystem from Fig. 1 is an example of such a component. The RF Signals subsystem is essentially a shell
that will be filled in later in development. We don’t yet know the details of how the radar altimeter will work, but
we do know that it will be specified in this system component. We define inputs, outputs, and signal attributes, but
not the details. The use of graphical tools that support hierarchy enable this type of flexibility when it comes to
model fidelity. The ability to add detail to the model at different stages of development is key to efficient
engineering.

In refining the initial requirements for this system, models can be developed that capture the thoughts and ideas

of the system architects as well. As the project moves from requirements gathering to specification, the concepts of
the system architects can be included in the model –the very same model that was used by the initial configuration
designers. Interfaces between components can be specified using data busses that can strictly define the signals that
need to pass between components. Information about the rate of data transfer and types of signals can be specified at
this point. The system can also be expressed as a series of separate models that are to be aggregated into an overall
system model for testing. Breaking down the model into components facilitates component-based development,
allowing several teams to work on individual components in parallel. Figure 3 shows how this was accomplished for
the specification of redundant CPUs in separate avionics bays.

American Institute of Aeronautics and Astronautics

7

Figure 4. Lookup tables implementing the aerodynamic model through
measured coefficients.

B. Design
Leveraging graphical

models in the design phase of a
project is most effective when
the graphical models can be
simulated. Defining the
semantics of the graphical
models in a way that allows
complete mathematical
execution of the diagrams
ensures that the models
correctly express the engineer’s
concept. Without being able to
simulate or execute the
diagrams, graphical techniques
are nothing more than a better
way to document your ideas.
Simulation verifies that your
diagrams include consistent
data and mathematics. It also
helps ensure that critical
components are included in
your design – even if they are
initially only placeholder
components.

Because graphical models
must simulate the world they
represent, it is important to
leverage both measured real-
world data and first-principles
modeling techniques. Each
serves a different purpose
during development. First
principles modeling involves
such activities as deriving
equations of motion and
analyzing force and moment
diagrams. It also can involve
simply knowing which
mechanical, electrical, or
hydraulic components make up
a system. Modeling from measured data involves system identification methods and expressing block components as
tables or polynomials. In our example, we use both types of modeling. First principles were used to model basic
elements of the vehicle model, such as the combination of aerodynamic, thrust, and landing gear forces summing to
the total forces and moments applied to the vehicle. In the aerodynamic subsystem, however, we used wind tunnel
data applied through efficient table lookup blocks to model the flight characteristics. This data was taking from the
NASA Technical Memorandum5 detailing the subsonic aerodynamics for the HL-20. Figure 4 shows the subsystem
implementing the multidimensional table lookup blocks for this model. Note that common indices (AlphaIdx and
BetaIdx) are calculated and applied to all the lookup tables, since the data was measured with the same angle-of-
attack and sideslip values. This approach results in a highly efficient implementation of the lookup table algorithms.

Control design is a critical part of the design work at this stage in the process. The controller must be designed to

provide robust stability throughout the vehicle flight envelope. The graphical techniques used to describe the model
must also extend to the control design phase to ensure that accurate models of the system are applied. Linearization
and other tools are needed to extract a form of the (generally) non-linear model that can be used with linear control
design tools.

American Institute of Aeronautics and Astronautics

8

Design should proceed in
conjunction with simulation to
derive the maximum benefit
from the models built in the
specification stage. The
simulation, however, must
work with various domains of
system expression. The block
diagram notation traditionally
used in the control design
world has found its way in to
other applications, such as
signal processing and
communications systems.
State machines have also been
useful in describing logic for
controllers, and many control
systems are dominated by state
logic. Figure 5 illustrates a
Stateflow diagram depicting
some of the logic used in the
fault detection, isolation, and
recovery algorithm for the
control surface actuators of the
HL-206.

As systems have become
more complex7, detailed
modeling of the physical
systems being controlled has increased in importance. Modern graphical simulators can simulate all of these
different domains together in a single environment. This is an advantage over linking multiple simulators together in
a co-simulation mode because the state dynamics of one domain can radically affect another domain. It takes a
single simulator to aggregate all of these effects properly to accurately model the system dynamics.

C. Implementation
The implementation phase of the project is where the largest gain can be realized from Model-Based Design.

The technology of automatic code generation from graphical diagrams has evolved to the point where efficiency and
readability of the code now match or exceed that of hand code for complex applications8. Software engineers can
use the options and flexibility of the code generator to create the exact type of code required. Typically, these
engineers must ensure that the code matches corporate standards and interfaces with modules that may still be
written by hand.

In the HL-20 example, code was generated from the Simulink model using Real-Time Workshop® Embedded
Coder, which generates highly efficient code for use in safety-critical and production embedded systems. The
options provided by the tool allow for complete customization of the code. Options to be considered at this stage in
development include:

? Datatypes and how and where the data is stored
? Execution options, such the triggering of multiple rates through interrupts
? Optimizations, such as code reuse, loop rolling, and expression folding

The final embedded target on which the code will be deployed needs consideration as well. Settings in the code
generator can be explored so that the best code is generated given the type of processor (floating or fixed point), the
memory available, and the speed of execution.

Figure 6 shows a portion of the guidance algorithm destine for implementation in the HL-20 guidance computer.
This part of the control algorithm “zeros out” the control demands as soon as any one of the three landing gear

Figure 5. Fault-detection logic expressed in Stateflow is integrated into the
overall graphical modeling environment of Simulink.

American Institute of Aeronautics and Astronautics

9

wheels touches down. This event is communicated by a weight-on-wheels (WOW) signal. While there is no WOW
signal, the control demands for lift (CL_demands) are passed to the actuators. When any of the wheels touches
down, the lift demands are set to zero.

Figure 7 shows the C code that was automatically generated from this algorithm. The code generator was set to
preserve the signal no_WOW during optimization. This setting results in readable code and makes is possible to log
the no_WOW signal for telemetry or other purposes. In Fig. 8, however, we have set the code generator to optimize
the variables as much as possible. This results in the statement for the logical signal and the switch being combined
for a more efficient, but less readable, implementation. This is the kind of trade-off that software engineers need to
make when using Model-Based Design. Adjusting code generation settings enables software engineers to optimize
the code globally for the specific coding standards, guidelines, and hardware constraints of the project.

Figure 6. Portion of guidance flight software, which eliminates
control demands when any wheel touches down.

 /* Logic: '<Root>/any wheel WOW' */
 rtB.no_WOW = (boolean_T)!(rtU.IMUGPSop.WOW[0] || rtU.IMUGPSop.WOW[1] ||
 rtU.IMUGPSop.WOW[2]);

 /* Switch: '<Root>/Ground Handling' */
 if(rtB.no_WOW) {
 demands_0 = rtB.CL_demands[0];
 demands_1 = rtB.CL_demands[1];
 demands_2 = rtB.CL_demands[2];
 } else {
 demands_0 = 0.0;
 demands_1 = 0.0;
 demands_2 = 0.0;
 }
Figure 7. Portion of automatically generated code from model in Fig. 6 with separate logic and switch
expressions.

American Institute of Aeronautics and Astronautics

10

D. Test
Many tools and processes have been developed for testing and verifying systems developed through traditional

text -based languages. Now, these tools and concepts are being applied to graphical tools through Model-Based
Design.

Model-Based Design helps with testing and verifying systems in two ways. First, simulation technology that

underlies these graphical models allow for testing of systems throughout the development process. Essentially, every
time a system is simulated, it is being tested to ensure that it still meets the high-level system requirements. An
example is checking that the HL-20 simulation continues to show the vehicle following the desired glide slope to the
runway. This checking, which can be performed at every stage of the process, promotes continuous verification of
the design. Secondly, the tests for ensuring that requirements are met can be built into the models during the
development process. In fact, engineers can build these tests as test harnesses early in development and use them to
prevent regressions in the design as it moves from one phase to the next.

By mapping the initial requirements of the system to the design models and to the test case models, improved

traceability between designs, tests and requirements can be achieved. Furthermore, model coverage reporting can
indicate which portions of a model have been executed by a particular test case. Figure 7 describes how test cases
and designs can be refined with Model-Based Design through the use of mo del coverage analysis.

 /* Switch: '<Root>/Ground Handling' incorporates:
 * Logic: '<Root>/any wheel WOW'
 */
 if((boolean_T)!(rtU.IMUGPSop.WOW[0] || rtU.IMUGPSop.WOW[1] ||
 rtU.IMUGPSop.WOW[2])) {
 demands_0 = rtB.CL_demands[0];
 demands_1 = rtB.CL_demands[1];
 demands_2 = rtB.CL_demands[2];
 } else {
 demands_0 = 0.0;
 demands_1 = 0.0;
 demands_2 = 0.0;
 }
Figure 8. Portion of automatically generated code from model in Fig. 6 combining logic and
switch expressions.

American Institute of Aeronautics and Astronautics

11

V. Conclusion
In this paper, we discussed the role of graphical tools in the design of complex systems. A brief review of the

evolution of graphical tools showed that today’s tools provide a unified environment that is both sophisticated and
broad enough for mainstream aerospace system development. A sample aerospace design demonstrated how these
tools can be effectively leveraged in Model-Based Design, enabling organizations to:

? Foster innovation by conducting rapid design iterations and ‘what-if” studies
? Improve quality by reducing design and hand-coding errors and enabling unambiguous communication among

design teams
? Reduce costs by minimizing the need for expensive prototypes
? Meet schedule milestones mo re effectively

Figure 7. Designs and test cases linked to requirements are part of Model-Based
Design applied to aerospace development processes .

American Institute of Aeronautics and Astronautics

12

References

1 Astrom, K. J., Elmquist, H., and Mattsson, S. E., “Evolution of Continuous-Time Modeling and Simulation,” The 12th

European Simulation Multiconference, ESM’98, Manchester, UK, 1998.

2 Erkkinen, T., “Code Generation & High-Integrity Embedded Systems,” Dr. Dobb’s Journal, Vol. 29, Issue 6, June 2004,

pp. 68-70.

3 “HL-20 model for Personnel Launch System research,” NASA Facts on line [online journal], NF172, URL:

http://oea.larc.nasa.gov/PAIS/HL-20.html [cited 12 August 2004], April 1992.

4 MacConochie I. O.,"A Study of Lifting Body as a Space Station Crew Exigency Return Vehicle (CERV)," NASA CR-

2000-210548, October 2000.

5 Jackson E. B., and Cruz C. L.,"Preliminary Subsonic Aerodynamic Model for Simulation Studies of the HL-20 Lifting

Body," NASA TM4302, August 1992.

6 Mosterman, P., and Ghidella, J., “Model Reuse for the Training of Fault Scenarios in Aerospace,” AIAA Modeling and

Simulation Technologies Conference, AIAA-2004-4931, AIAA, Providence, RI, 2004.

7 Krasner, J., “Model-Based Design and Beyond: Solutions for Today’s Embedded Systems Requirements,” Embedded

Market Forecasters, American Technology International, Framingham, MA, January 2004.

8 Hodge, G., Ye, J., and Stuart, W., “Multi-Target Modelling for Embedded Software Development for Automotive

Applications,” 2004 SAE World Congress, 2004-01-0269, SAE International, Detroit, MI, March, 2004.

9 MATLAB, Software Package, Ver. 7.0, The MathWorks, Inc., Natick, MA, 2004.

10 Simulink, Software Package, Ver. 6.0, The MathWorks, Inc., Natick, MA, 2004.

11 Simulink Verification and Validation, Software Package, Ver. 1.0, The MathWorks, Inc., Natick, MA, 2004.

12 Simulink Report Generator, Software Package, Ver. 2.1, The MathWorks, Inc., Natick, MA, 2004.

13 SimMechanics, Software Package, Ver. 2.2, The MathWorks, Inc., Natick, MA, 2004.

14 Stateflow, Software Package, Ver 6.0, The MathWorks, Inc., Natick, MA, 2004.

15 Real-Time Workshop Embedded Coder, Software Package, Ver 4.0, The MathWorks, Inc., Natick, MA, 2004.

16 Aerospace Blockset, Software Package, Ver. 1.6, The MathWorks, Inc., Natick, MA, 2004.

