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ABSTRACT 

Typically, battery models are complex and difficult to 
parameterize to match real-world data. Achieving a good 
generalized fit between measured and simulated results 
should be done using a variety of laboratory data. 
Numerical optimizations can ensure the best possible fit 
between a simulation model and measured data, given a 
set of constraints.  

In this paper, we propose a semi-automated process for 
parameterizing a lithium polymer battery (LiPB) cell 
simulation model that is able to satisfy constraints on the 
optimized parameters. This process uses a number of 
measured data sets under a variety of conditions. An 
iterative numerical optimization algorithm using Simulink 
Parameter Estimation was implemented to estimate 
parameter values by minimizing error between 
measured and simulated results. 

INTRODUCTION 

For many battery-based systems, it is necessary to be 
able to accurately estimate values indicative of internal 
states and parameters of the electrochemical cells 
themselves. Example systems include electric vehicles 
(EVs) and hybrid electric vehicles (HEVs). In both of 
these applications, we desire estimates of battery state-
of-charge (SOC) and battery state-of-health (SOH). 
These estimates are often obtained by using models, a 
method that further necessitates an accurate 
mathematical description (model) of the dynamic 
characteristics of the cells. In this paper, we first 
describe a suitable model structure and then discuss 
how the parameters of this model may be automatically 
fit using MATLAB, Simulink, and Simulink Parameter 
Estimation. 

For a battery model to be useful, it should contain as 
identifiable parameters those values that are to be 

estimated. For example, if we wish to estimate SOC, 
then SOC must be a variable in the equations of the 
model. We may also wish to estimate cell resistance and 
capacity, both of which contribute to a description of the 
cell’s SOH. If so, these values should also appear as 
variables in the model. 

The most accurate estimators of cell SOC and SOH that 
we are aware of are based on Kalman filtering 
methods[1–4]. Kalman filters impose further restrictions on 
the form that the model equations must take. In 
particular, the model must be in a “state-space” form: 

xk+1 = f(xk ,uk ,wk)

yk = g(xk,uk ,vk)
 

(1) 

(2) 

where xk  is the state vector at discrete-time index k, uk  
is the measured system input vector at time k (perhaps 
including battery-pack current, temperature, etc.), and 
wk  is unmeasured “process noise” (modeling inaccuracy 
of the cell model). The system output is yk , and vk  
models sensor noise. The stochastic inputs wk  and vk  
are assumed to be zero-mean white Gaussian random 
processes with covariance matrices Σw and Σv , 
respectively. Equation (1) is called the “state equation,” 
(2) is called the “output equation,” and f( ) and g( ) are 
(possibly nonlinear) functions, specified by the particular 
cell model used. 

To be more specific, the system input vector uk  typically 
contains the instantaneous cell current ik. It may also 
contain the cell temperature Tk , an estimate of the cell’s 
nominal capacity Ck , and/or an estimate of the cell’s 
internal resistance Rk, for example. The system output 
is typically a scalar but may be vector valued as well. 
Here we consider the output to be the cell’s loaded 
terminal voltage—not at-rest open-circuit-voltage (OCV). 
The system’s state vector xk  in some way represents in 
summary form the total effect of all past input to the 



system so that the present output may be predicted 
solely as a function of the state and present input. 
Values of past inputs are not required.  

ENHANCED SELF-CORRECTING CELL MODEL 

The model that we use in this paper is a specific variant 
of what has been called the “enhanced self-correcting” 
(ESC) cell model [1–4]. We briefly review the model 
equations in this section. The final form of the model fits 
within the framework of equations (1) and (2), so it may 
be used for estimating SOC and SOH using Kalman filter 
techniques. 

The basis for the SOC state equation is developed as 
follows: If z(t) = SOC  at time t, we know that 

z(t) = z(0) − η(i(τ ))i(τ )
Cn

0

t

∫ dτ ,  (3) 

where Cn  is the nominal capacity of the cell, i(t) is the 
cell current at time t, and η(i(t))  is the Coulombic 
efficiency of the cell. A discrete-time approximate 
recurrence may then be written as 

zk+1 = zk − η(ik )ik ∆t
Cn

,  (4) 

where ∆t is the sampling period (in hours). Equation (4) 
is used to include SOC in the state vector of the cell 
model as it is in state equation format already, with SOC 
as the state and ik as the input.  

The dynamics of the change of polarization voltage are 
also captured by a state equation. We add “filter states” 
with linear dynamics: 

fk+1[ ]= diag(α)[ ] fk[ ]+ ik.  

The vector α  has N filter “poles,” with | α |< 1  for stability, 
corresponding to time constants of the polarization 
voltage dynamics. We use N = 2 . 

A further phenomenon captured by a state equation is 
hysteresis. A cell that has recently undergone a charge 
event will have a higher rest voltage than one that has 
undergone a discharge event, even at the same SOC. 
That is, voltage does not decay to OCV, but to OCV plus 
or minus a factor based on the hysteresis of the cell. We 
note that hysteresis is not a phenomenon generally 
associated with lithium-ion systems, since most 
applications have been in the light portable electronics 
area where SOC accuracy is not as critical as in the 
HEV application and where temperatures are not as 
extreme. It is, however, very pronounced at low 
temperatures and can lead to SOC errors as large as 
±40% if the estimate is based simply on OCV (even with 
full cell relaxation).  

A hysteresis state implementing a linear-time-varying 
difference equation may be modeled as: 

hk+1 = exp −
η(ik )ikγ∆t

Cn









 hk +

1− exp − η(ik )ikγ∆t
Cn


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 sgn(ik ).

 (5) 

where the sgn function returns -1 if its argument is 
negative, 0 if its argument is zero, and +1 if its argument 
is positive and where γ  is a hysteresis rate constant.  

The three components of the system state are 
combined: 

xk = fk
T hk zk 

T
.   (6) 

The corresponding equations for fk , hk , and zk  also 
combine to form the vector function f( ). 

The cell terminal voltage is modeled by the output 
equation g( ). With the states of the system as defined, 
the ESC model computes: 

yk = OCV(zk ) + C fk[ ]− Rik + Mhk.  (7) 

The voltage is computed as the sum of the open-circuit-
voltage at the present SOC, plus a weighted sum of the 
polarization voltage states, minus ohmic losses, plus 
hysteresis. (M  represents the maximum hysteresis 
voltage at the present temperature.)  

A further constraint on equation (7) is that during a 
constant-current charge or discharge, the polarization 
filter voltages must converge to zero so that 
yk → OCV(SOC) − I ×R  (plus hysteresis) [4, Part 2]. All 
components Ck  of the vector C are free to be optimized 
except the Nth, which is computed as: 

CN = − Ck

(1− αN )
(1− αk )k=1

N−1

∑  (8) 

 
IMPLEMENTING THE ESC MODEL 

The mathematical equations that define the ESC model 
have now been presented, but numeric values are 
needed for the constants to complete the model. In 
particular, we require values for: 

� A Coulombic efficiency factor η(i(t)) . The high-
efficiency LiPB cells for which we report results have 
Coulombic efficiency that is indistinguishable from 
unity, so we use a constant value of 1.0. 

� A nominal cell capacity, Cn . These cells are 
approximately 5 Ah cells, but our method is able to 
identify the exact value based on experimental data, 
as noted in following sections. 

� A vector of filter poles, α . We use two filter poles, or 
N = 2 . We find that the system has one slow filter 
pole that is insensitive to temperature variation, so 
we fix its value at 0.99999. A second filter pole is 
found by optimizing β and computing the pole 



location to be 0.99998 tanh(β) . The tanh function 
ensures that the resulting filter pole will be 
constrained to have magnitude less than unity, and 
result in a stable filter. 

� A hysteresis rate constant, γ . The simulations show 
that the model is relatively insensitive to γ  within a 
wide range. We choose γ  such that γ∆t = 1. 

� A vector of polarization voltage blending factors, C. 
� A maximum hysteresis voltage, M. 
� An ohmic resistance, R. 
� A function that computes OCV as a function of SOC. 
 
Note that the remaining unknown parameters Cn , β, C, 
M, R, and the OCV function may all be temperature 
dependent. 

Figure 1 shows a Simulink diagram of a subsystem that 
implements the state equation of the ESC model. There 
are four inputs: the cell current ik , which is input port 
“Current”; the first polarization voltage filter pole α1 , 
which is input “a1”; the second polarization voltage filter 
pole α2 , which is input “a2”; and the cell capacity Cn , 
which is input port “Capacity.” The subsystem computes 
updated values of the cell state: the cell SOC zk , which 
is output port “SOC”; the cell hysteresis voltage value hk

, which is output port “hyst”; the first polarization voltage 
state fk,1 , which is output port “f1”; and the second 
polarization voltage state fk,2 , which is output port “f2.” 
The only discrepancy between this diagram and the prior 
equations is the “Gain factor” of 1e-4, which is used to 
scale the polarization voltage states to roughly the same 
amplitude range as the SOC and hysteresis states. The 
optimization process for the model automatically 
compensates by computing “C” vector parameters that 
are correspondingly larger than if the gain factor were 
absent. 

 
Figure 1. Simulink diagram of a subsystem that 
implements the state equation of the ESC battery 
cell model. 

 
 
 
Figure 2  shows a Simulink diagram of a subsystem that 
implements the output equation of the ESC model. 
There are 10 inputs: the cell current ik , which is input 
port “Current”; the cell temperature, which is input port 
“Temperature”; the cell SOC zk , which is input “SOC”; 
the cell hysteresis value hk , which is input “hyst”; the 
first polarization voltage fk,1 , which is input “f1”; the 
second polarization voltage fk,2 , which is input “f2”; the 
cell resistance R , which is input “Resistance”; the cell 
maximum hysteresis level M , which is input “MaxHyst”; 
the first C vector component C1 , which is input “c1”; and 
the second C vector component C2 , which is input “c2.” 
The subsystem first uses temperature and SOC with 
lookup tables to compute OCV from SOC at the present 
temperature (using a method described in the following 
section). Then, the output equation of the ESC model is 

computed based on all inputs. 
 
Figure 2. Simulink diagram of a subsystem that 
implements the output equation of the ESC battery 
cell model.  

 
DATA COLLECTION AND BASIC RESULTS 

Data from cell tests was collected for the purpose of 
fitting parameter values to the ESC cell model. Two sets 
of tests were performed. One recorded cell responses 
that could be used to compute an OCV versus SOC 
relationship at different temperatures, and the second 
recorded cell responses that could be used to determine 
the dynamic parameters of the cell model. This section 
describes these two types of test. 

The data was gathered from prototype LiPB cells. These 
cells comprise a LiMn2O4 cathode and an artificial 
graphite anode, have a nominal capacity of 5 Ah and a 
nominal voltage of 3.8 V, and are designed for high-
power applications. For the tests, we used a Tenney 
thermal chamber and an Arbin BT2000 cell cycler. Each 

 
 



channel of the Arbin was capable of 20 A current, and 
multiple channels were connected in parallel to achieve 
higher current levels. The cycler's voltage measurement 
accuracy was ±5 mV, and its current measurement 
accuracy was ±200 mA. Cell variability, even with these 
prototype (handmade) cells, was small, and partly 
mitigated by wiring several cells in parallel during testing 
to electrically average the dynamic behavior. We expect 
the results from testing these cells to be representative 
of what we would see in production cells. 

OCV VERSUS SOC – The first set of cell tests was done 
to evaluate the OCV versus SOC relationship at different 
temperatures. Three cells were connected in parallel to 
electrically average their responses. The tests 
comprised fully charging the cells at room temperature, 
allowing the cells to soak at the target temperature for 
two hours, discharging the cells at a C/30 rate until fully 
discharged, and charging the cells at a C/30 rate until 
fully charged. Tests were conducted at nine 
temperatures spanning the operating temperature range 
of these cells, from -30°C to 50°C. 

The test data was analyzed by first computing a voltage 
relationship versus SOC for the discharge portion of the 
test, and then computing a second voltage relationship 
versus SOC for the charge portion of the test. At each 
SOC, the OCV was computed to be the average of the 
discharge voltage and the charge voltage. This process 
greatly diminishes the contributions of ohmic voltage and 
hysteresis voltage from the computed OCV relationship. 

This analysis produces an individual OCV versus SOC 
relationship for each temperature. A large two-
dimensional table could be constructed to store this 
information and be used for computing OCV versus SOC 
at different temperatures, but the regular structure of the 
data suggested a better relationship. We model OCV as 
a function of SOC and temperature as follows: 

OCV(zk,tk ) = OCV(zk,0) + tk∆OCV(zk )  

That is, the open-circuit-voltage at any given SOC level 
and temperature was computed as the OCV at that SOC 
level at 0°C plus the temperature times a temperature-
correction factor at that SOC level. This allows the OCV 
at any SOC and temperature to be computed using two 
one-dimensional table lookups versus a two-dimensional 
table lookup: a savings in storage and ultimately in 
computation.  

Figure 3 displays the processed OCV versus SOC 
relationships for three temperatures in the operating 
range of the cell: minimum temperature, room 
temperature, and maximum temperature. 

 
 
Figure 3. OCV test: OCV versus SOC over the 
operating range of the cell. 
 
DYNAMIC CELL PARAMETERS – The second test was 
a sequence of 19 “urban dynamometer driving schedule” 
(UDDS) cycles, separated by 15 A discharge pulses and 
five-minute rests, and spread over the entire SOC range. 
Rate as a function of time for one of the UDDS cycles is 
plotted in Figure 4. SOC as a function of time is plotted 
in Figure 5. The cell starts fully charged and is 
immediately discharged to less than 90% to bring it 
within its normal operating range. The test continues 
from there. We see that SOC increases by about 5% 
during each UDDS cycle but is brought down about 7% 
during each discharge between cycles. The entire 
operating range for these cells (10% SOC to 90% SOC) 
is excited during the cell test. This dynamic data was 
used to identify the remaining parameters of the cell 
model, as described in the next sections. The goal is to 
have the cell model output resemble the cell terminal 
voltage under load as closely as possible, at all times, 
when the cell model input is equal to the cell current. 

 

Figure 4. Dynamic test: Current vs. time for one 
cycle. 
 



 

 
Figure 5. Dynamic test: SOC versus time. 
 

PARAMETER IDENTIFICATION 

The remaining unknown battery parameters could not be 
directly measured. These parameters were adjusted to 
best match model simulation results to the UDDS cycle 
data. Simulink Parameter Estimation was used to 
simplify and automate the process of identifying these 
unknown parameters. Simulink Parameter Estimation 
uses numerical optimization algorithms that estimate 
parameter values to minimize error between a model’s 
simulated results and measured time-domain data. 

Determining the optimum settings for the estimation and 
simultaneously selecting which parameters to estimate is 
not a trivial task. Although Simulink Parameter 
Estimation has knowledge of the model output values 
that the user provides, it cannot easily account for 
relationships between the parameters that are being 
tuned. If multiple parameters being estimated have a 
similar effect on the output, the optimization algorithms 
alone cannot distinguish between the similar 
parameters. Unless a sufficient variety of data is 
available to exercise all estimated parameters fully, it is 
typically necessary to take a careful and methodical 
approach to estimating parameter values.  

REDUCING THE PROBLEM COMPLEXITY - The 
parameters Cn , β, C, M, and R needed to be identified. 
These parameters were temperature-dependent, and 
lookup tables were used to calculate the parameter 
values versus temperature, as shown in Figure 6. 
Assuming eight temperature breakpoints were used, we 
would have had a total of 40 parameters to tune.  

 

Figure 6. Parameter lookup table. 
 

In Simulink Parameter Estimation, the nonlinear least-
squares algorithm (lsqnonlin ) requires at least (2n+1) 
simulations per iteration, where n is the number of 
parameters being estimated. As the number of data sets 
and estimated parameters increased, the required CPU 
time and memory usage also increased significantly. We 
attempted to estimate all 40 parameters simultaneously, 
but quickly ran out of memory on a 32-bit platform. 
Further experimentation revealed that the estimation 
needed to be reduced to about 15 parameters with the 
eight UDDS data sets to avoid failing due to the 32-bit 
platform memory limitation. We could have immediately 
switched to a 64-bit platform to remove the memory 
limitation, but we instead attempted to reduce the 
number of parameters. This helped us to reduce the 
CPU time and memory required for the estimation task, 
so that we could more quickly and easily investigate the 
effects of trying various estimation settings and 
algorithms. 

For the ESC model, no dynamic data was available for 
electrolyte temperature. Thus, we had to make the 
assumption that electrolyte temperature variation during 
the OCV and UDDS cycles was insignificant. This 
simplified the problem by allowing us to assume a 
constant temperature for each test.  

The estimation was initially broken down by temperature 
to reduce the number of parameters estimated 
simultaneously. The data points for each unique 
temperature were estimated separately, thus reducing 
the estimation task to only five parameters at once. 
Since only one UDDS data set was available for each 
temperature, only one data set was used for each 
estimation task. We also attempted to estimate the initial 
SOC for the UDDS data, although charging techniques 
were used that ensured that initial SOC for data 
collection was very close to 1. The small quantity of 
parameters and data per estimation greatly improved the 
estimation speed; an estimation task for each 
temperature would complete in only a few minutes.  

For each temperature, a Simulink Parameter Estimation 
task was created and run using a MATLAB M-function. 
Also, only one UDDS data set was used for each 
estimation task. The following Simulink Parameter 
Estimation software tool settings were used: 

hEst.OptimOptions.Algorithm = 'lsqnonlin' ; 
hEst.OptimOptions.MaxFunEvals = 400; 

MaxHyst

5

Lookup Table
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x

xdat

ydat

yTemps

Temperature

MTemp_table_data

M_table_data



hEst.OptimOptions.MaxIter = 100; 
hEst.OptimOptions.TolX = 1e-3; 
hEst.OptimOptions.TolFun = 1e-3; 
 
SPECIFICATION OF ESTIMATED PARAMETERS - 
Selection of the optimization algorithm, the estimated 
parameters, and the parameter constraints for the 
battery parameterization was a trial-and-error process. In 
our initial estimation attempt, five parameters were 
estimated, and their maximum and minimum values 
were given a broad range. An initial guess for each 
parameter was chosen based on prior experimentation 
with the model. Table 1 shows the parameters estimated 
and their constraints.  

Parameter Initial Value Minimum Maximum 
B 3 0 10 
C –0.5 –10 10 
Cn 5 0 10 
R 0.05 0 1 
M 0.01 0 0.5 

Table 1. Parameter constraints: Initial estimation.  
 
The parameters in Table 1 were estimated at each 
temperature breakpoint using the UDDS data sets. The 
optimized parameter values were plotted for each 
temperature to examine parameter sensitivities and 
determine whether the values were realistic. It was 
assumed that the battery was fully charged to 100% 
SOC at the beginning of each data set. 

The optimized parameters in Figure 7 showed some 
variability in parameters Cn (capacity), C (voltage 
relaxation), and M (maximum hysteresis). The optimized 
table values for these parameters did not have smooth 
relationships with temperature. There are a few possible 
reasons for this variation. It is possible that there was 
some inconsistency in the data itself, or in the physical 
battery. However, it is also possible that there was some 
linkage between parameters that were tuned, meaning 
that adjusting two separate parameters may have had a 
similar effect on the results. Simulink Parameter 
Estimation cannot distinguish between linked 
parameters based solely on output data dependent 
equally on both linked parameters. Assuming this was 
the case, the optimization problem was not well 
constrained. We investigated a few possible remedies to 
further constrain the estimation.  

One possible solution would have been to add data sets 
that better exercised these parameters. Providing 
measured data under a variety of operating conditions 
and equalizing the weights between data sets may have 
been helpful. However, we had limited data to work with 
so this was not feasible. 

 

Figure 7. Parameter values: Estimating five 
parameters. 
 
A second potential solution was to fit characteristic 
equations to these parameters to constrain the shape of 
each parameter curve. This method was investigated, 
but it would have required significant CPU time for the 
estimation tasks. We did not initially attempt this, 
because the long estimation times would have hindered 
our ability to examine different estimation settings.  

The third solution was to break up the estimation into 
steps, to isolate the parameters. In particular, we knew 
that the battery capacity Cn should increase with 
temperature in the -30°C to 50°C range. Using the O CV 
data, we could separately parameterize the capacity 
parameter Cn, using capacity optimization techniques[5].  

For the ESC model, the capacity model was 
implemented as a temperature-dependent lookup table. 
OCV discharge curves at a C/30 rate were assumed to 
have a low enough discharge current that the electrolyte 
temperature was constant and the full capacity of the 
battery was extracted. The integration of extracted 
charge for the OCV data at each temperature was used 
to determine the maximum extracted charge, as shown 
in Figure 8. 

  
Figure 8. Charge extracted during 20°C cycle. 
 
We repeated the estimation, this time using fixed values 
for Cn. Table 2 shows the parameter settings, and Figure 
9 shows the optimized parameter values. 



Parameter Initial Value Minimum Maximum 
B 3 0 inf 
C –0.5 –inf inf 
R 0.05 0 inf 
M 0.01 0 inf 

Table 2. Parameter constraints: Fixed C n. 

 

 

Figure 9. Parameter values: Fixed capacity curve. 
 
In Figure 9, the resulting parameter values did have a 
slightly smoother relationship with respect to 
temperature, aside from a few outliers. The relationship 
for M (hysteresis) was still somewhat inconsistent. It is 
likely that additional data sets would have better 
exercised the hysteresis effects, thus allowing us to 
better parameterize M.  

The simulation results for the parameter values in Figure 
9 were reasonably accurate across each UDDS data set. 
Figure 10 shows an example of the simulation results at 
10°C. The accuracy of the simulated voltage versus 
measured voltage was generally reasonable, but trailed 
off at the end of the discharge (low SOC). 

 

Figure 10. Simulation results (10°C). 
 
Figure 11 provides a closer look at the transients in the 
simulation; the simulated voltage is close to the 
measured value, but there is some difference in the 

shape during transient events. The sharp simulated 
transients could be due to limitations in the model itself 
or the limited amount of data available.  

 

Figure 11. Simulation results zoomed (10°C). 
 
The RMS error of the simulation data was computed and 
averaged over time for each UDDS data set (see Figure 
12). The maximum observed error in each data set was 
also plotted. Across all temperatures, the mean voltage 
error was 0.038V, or 1% of nominal cell voltage. The 
maximum voltage error during simulation varied with 
each data set and averaged 0.46V. Although this is a 
large error, it always occurred at low SOC.  

 

Figure 12. Simulation error (UDDS) vs. temperature.  
 
FUTURE WORK 

Although the Simulink Parameter Estimation 
parameterization of the ESC battery cell model gave 
reasonable results, a few areas could benefit from 
further study: 

• The accuracy of the simulation results averaged 
about 1% error, but there was still room for 
improvement, particularly in the shape of the 
transients and also the response at low SOC.  

• The parameter lookup tables were expected to 
have smooth curves with respect to 
temperature. Ideally, we would fit equations in 



place of the tables to help constrain the 
parameters during estimation and to ensure that 
the parameters’ variance with temperature fit a 
more realistic shape. 

To make these improvements, we would need additional 
data sets. Ideally, we would like to have a variety of data 
sets at each temperature, including OCV curves and 
transient curves like the UDDS data. Additional data sets 
would give a better overall result, and the parameter 
curves would likely be smoother. 

Improvements to the model itself may also assist in 
improving the results. The shape of the transient 
response appeared to need some additional time 
constant to better match the measured results. Although 
low SOC modeling was not a concern for HEV 
applications, the simulation error at low SOC may benefit 
from a nonlinear SOC-dependent model of resistance 
(whose value can increase quite dramatically at low 
SOC). The addition of thermal modeling to the battery 
may also provide improvement. 

Additionally, we would likely need to use a 64-bit 
platform for the estimations. Ideally we would like to fit 
curves to each parameter and also add a thermal model 
to the battery. These changes would require that we 
estimate all temperatures simultaneously, which would 
increase the number of parameters estimated and 
consequently increase the CPU time and memory 
usage.  

CONCLUSION 

This paper describes the development of a lithium 
polymer battery (LiPB) cell model, along with a process 
to parameterize the model from measured laboratory 
data. The construction and simulation of the battery 
model are described. The paper also documents a 
process to estimate parameters for the model. In 
particular, Simulink Parameter Estimation was used with 
a MATLAB and Simulink based cell model. The 
optimized battery model simulated a number of UDDS 
cycles accurately, with 1% average voltage error.  
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