
www.embedded-world.eu

Develop and Integrate AUTOSAR Classic and
Adaptive Applications Based on SOME/IP

Shwetha Bhadravathi Patil

Technical Product Marketing
MathWorks

Natick, MA, United States
shwethap@mathworks.com

 Aastha Kanwar
Application Engineering

MathWorks GmbH
Ismaning, Germany

akanwar@mathworks.com

Roy Park
Consulting Services

MathWorks
Seoul, South Korea

roypark@mathworks.com

Abstract Enormous changes are underway in the
automotive software ecosystem. Driven in part by demanding
autonomous driving (AD) applications and advanced driver-
assistance systems (ADAS), automotive software now requires
more frequent updates, higher integration flexibility, and
greater computing power. As the AUTOSAR standard
describes, Classic and Adaptive Platforms complement each
other to serve the demands of modern automotive applications.
However, little has been published to guide the development of
complete integrated systems with AUTOSAR Classic and
Adaptive applications. This paper describes a Model-Based
Design approach to develop heterogenous software applications
that communicate using SOME/IP (Scalable service-Oriented
MiddlewarE over IP).

I. INTRODUCTION

The automotive software ecosystem has been undergoing a
transformation in recent years. The changes are driven by the
increase in demanding ADAS and highly automated driving
applications, connected mobility, and a clear trend to transition
to software-defined vehicles that use high-performance
computers and centralized architectures. The next generation of
automotive software will rely on high rates of data transfer and
high computing power to support smart applications that
process large quantities of sensor data, including point clouds,
images, and video data. Off-loading demanding applications to
cloud services is another key capability, which in turn requires
secure, reliable communication with low latency. Higher
integration flexibility and over-the-air updates enable
customers to download new applications, software updates, and
bug fixes on-the-fly. The challenge is to provide these new
capabilities while reducing cost and complexity, following
efficient software development workflows.

The AUTOSAR (AUTomotive Open System ARchitecture)
organization provides standard platforms to support current and
future generations of automotive electronic control units
(ECUs). AUTOSAR provides the Classic Platform, used for
safety-critical and hard real-time applications on cost-

optimized microcontrollers, such as the powertrain and chassis.
To address the needs of automated driving, Vehicle-to-X, and
infotainment applications, the AUTOSAR organization
introduced the AUTOSAR Adaptive Platform in 2017. The
Adaptive Platform uses a service-oriented architecture that
works on the principle of service providers and service
consumers, which provides an efficient alternative to classical
signal-based communication. The Adaptive Platform is
designed to support high-performance processors (> 20.000
DMIPS) and fast Ethernet-based communication (100 Mbps -1
Gbps), in addition to capabilities such as over-the-air updates
and dynamic application deployment. As the AUTOSAR
standard describes, the Classic and Adaptive Platforms
complement each other to serve the demands of modern
automotive applications [1].

This paper describes an approach based on SOME/IP events
and model-based design for system development and testing of
communications among heterogenous ECU software
applications in a PC environment. The approach has been
validated in a proof of concept comprising three parts, detailed
in Section IV:

1. Development of an AUTOSAR Classic application
based on SOME/IP events

2. Development of an AUTOSAR Adaptive application
based on SOME/IP events

3. Testing communication between the AUTOSAR
Classic Server and Adaptive Client

II. SERVICE-ORIENTED COMMUNICATION IN AUTOSAR

The AUTOSAR Adaptive Platform supports SOME/IP and
data distribution service (DDS) for service-oriented
communication between AUTOSAR Adaptive, AUTOSAR
Classic, ROS, and other applications. Both SOME/IP and DDS

229

are middleware solutions that allow distributed applications to
communicate using the publish-subscribe pattern. This paper
describes the use of SOME/IP to communicate between Classic
and Adaptive applications. [1]

A SOME/IP protocol has been specifically developed for
automotive software for service-oriented communication over
a network. The services are provided by servers, and a client
can dynamically find the available services via service
discovery and subscribe to them. Clients and servers can be
distributed across different ECUs [2].

A service consists of zero to multiple combinations of
methods, events, and fields. Figure 1 illustrates the concepts of
methods, events, and fields for client-server communication.
Methods allow the subscriber to issue remote procedure calls
that are executed on the provider side. In the request/response
method, a client can request asynchronous or synchronous calls
to the server, and the server responds with an acknowledgment
or an error message. SOME/IP also defines a fire/forget
method, where a client makes a request to the server but does
not receive any response from the server. If the client does not
desire to request data from the server each time, events could
be a better fit because events allow the client to subscribe to a
service by sending a one-time subscription request. The server
sends the subsequent data changes periodically to the
subscribed clients, without additional requests [1].

Finally, fields may be interpreted as a combination of the
method and event features. A field is a combination of one or
more of the following:

a) A notifier that sends data on a change from the
provider to the subscriber

b) A getter that can be called by the subscriber to
explicitly query the provider for the value

c) A setter that can be called by the subscriber when it
wants to change the value on the provider side

III. DEVELOPMENT OF AUTOSAR SOFTWARE BASED ON

SOME/IP EVENTS

The service-oriented event features in AUTOSAR are
implemented in different ways in the Classic and Adaptive
applications.

A. Handling of SOME/IP Events in AUTOSAR Classic
In Classic, services related to finding and offering services

and event registration are handled by the Service Discovery
(SD) module, the Basic Software Manager (BSWM), and the
Run-Time Environment (RTE). As illustrated in Figure 2,
separate mode request and switch ports are required for the find
service/offer service and the event subscribe/check subscribe
tasks at client and server software components (SWCs). [1]

Figure 2 shows the required port configuration and data
exchange of a single event between a client and a server. In the
client model, a mode request port requests find service and a

mode switch port receives feedback on whether there is a
service. Additionally, the client SWC needs another mode
request port to request event registration to the server and a
mode switch port to receive feedback on whether event service
is possible from the actual server.

The server SWC has complementary ports. A mode request
port offers service to the client and a mode switch port receives
feedback on whether there is an event registration request from
the actual client. Finally, the actual event data is exchanged via
additional sender/receiver (S/R) ports.

B. Modelling of SOME/IP-Based Classic Applications using
Model-Based Design

Model-based design is a well-established development
methodology for automotive embedded software. In the
previous section, we discussed the required communication
ports for event data exchange between a client and a server.
Figure 3 shows the implementation of this use-case for
Classic client/server SWCs using model-based design. A
comparison of Figure 2 and Figure 3 highlights the one-to-
one mapping between the AUTOSAR concepts and

Figure 2 Handling of SOME/IP events in AUTOSAR Classic applications

Figure 1 Methods, events, and fields in SOME/IP protocol

230

www.embedded-world.eu

corresponding implementations using Model-Based Design.
The ports have been configured as mode request, mode
switch, and sender/receiver (S/R) ports, as in Figure 2. The
algorithm has been implemented within the subsystems. At
this stage, simulation can be employed to ensure the correct
functionality of the modeled algorithms. After the design has
been sufficiently verified, the application code can be
automatically generated. Figure 4 shows the RTE function
calls generated for each port in the application code for the
client. [3]

Figure 4 Application code for a Classic client

C. Handling of SOME/IP Events in AUTOSAR Adaptive
Unlike Classic, in the Adaptive applications, event-related

tasks are handled in the AUTOSAR Runtime for Adaptive
Applications by ara::com, a communication management layer
that implements the service-oriented architecture pattern to
achieve flexibility and scalability for distributed processing [6].
Therefore, the development of event-based applications is

simplified compared to AUTOSAR Classic. Figure 5 illustrates
the exchange of event data using event request/provide ports [1].

D. Event Modelling in Adaptive Applications using Model-
Based Design

Event data exchange for Adaptive applications is modelled using
message-based communication [5]. Figure shows the
modelling of a simple client/server mechanism for Adaptive
applications. Figure shows the corresponding application code
for the adaptive client model. The generated code shows the
handling of event registration and event data transmission and
reception by ara::com [4].

Figure 6 Modelling of event data exchange for Adaptive client/server

Figure 7 Application code for Adaptive client

IV. INTEGRATION AND TESTING OF GENERATED CODE

As discussed in Section I, AUTOSAR Classic and Adaptive
Platforms address different components of automotive software.
Because of the complementary nature of AUTOSAR Classic
and Adaptive Platforms, there is a strong need for efficient
methodologies to integrate and test Classic and Adaptive
applications. To demonstrate the suitability of the model-based
design approach, a simple proof-of-concept was conducted. The
application code generated from the models was integrated with
a Classic and Adaptive stack. Finally, the communication, based
on SOME/IP, was established using an Ethernet connection.
This section describes the setup, development steps, and results.Figure 5 Handling of Events in AUTOSAR Adaptive

Application

Figure 3 Modelling of event data exchange for AUTOSAR Classic
client/server SWCs in Simulink

231

 The setup consisted of a Classic ECU, which provided
simple event data as a server via SOME/IP. The server planned
to service triangle wave data with a boundary of 10. An
Adaptive ECU served as a single client to the server, as shown
in Figure 8.

This proof-of-concept consisted of three main phases as shown
in Figure 9:

Phase 1 - Development of AUTOSAR Classic ECU
based on SOME/IP events

Phase 2 - Development of AUTOSAR Adaptive ECU
based on SOME/IP events

Phase 3 – Testing the communication between
AUTOSAR Classic server and Adaptive client

Figure 9 Development phases of the proof-of-concept

A. Phase 1: Development of AUTOSAR Classic Server
application based on SOME/IP events

Phase 1 consisted of developing the AUTOSAR Classic
server application using Simulink® from an ARXML file. After
importing the ARXML file, a skeleton model was created, and
the event data service behavior was implemented using
AUTOSAR Blockset. Finally, application code was generated
using Embedded Coder® as shown in Figure 10.

Next, the generated application code was integrated with a Basic
Software stack to generate a .dll file. This .dll file was embedded
on a virtual ECU network that operated as a node for testing.
Finally, a separate virtual client node was created on an ECU
network to validate the behavior of the server ECU.

B. Phase 2: Development of AUTOSAR Adaptive Server and
Client Application Based on SOME/IP Events
Phase 2 consisted of developing the AUTOSAR Adaptive

server and client application using Simulink from an ARXML
file. After importing the ARXML file into Simulink, a skeleton
model was created, and the implementation design of the event
server/client behavior was completed using AUTOSAR
Blockset. Finally, application code was generated using
Embedded Coder as shown in Figure 11.

Next, the generated application code was integrated with the
Adaptive Basic Software stack. Furthermore, a total of three

Figure 10 Development workflow of AUTOSAR Classic server application
code

Figure 11 Development workflow of AUTOSAR Adaptive client
and server application code

Figure 8 Classic ECU (server) and Adaptive ECU (client) for the
proof-of-concept

232

www.embedded-world.eu

target files were created – one each for the server and the client,
and a target file that played the role of ara::com, called the
SOME/IP daemon. Then these three target files were run on
Linux to verify that the developed client behaved as designed.

C. Phase 3: Testing the Communication between AUTOSAR
Classic Server and Adaptive Client
Phase 3 tested the communication between the Classic

server and the Adaptive client. On the Classic server side, a
separate Ethernet device was allocated a unique IP address.
Similarly, on the Adaptive client side, a separate Ethernet
device was allocated a unique IP address with the client running
on a LINUX virtual machine. These two devices were
connected using an Ethernet cable as shown Figure 12.

To test the communication, the virtual client node on the
ECU network was disabled, after having been previously
created for the Classic server in Phase 1. Then, the ECU
network was activated to run the Classic server, and the
SOME/IP daemon was executed. At this stage, the SOME/IP
daemon identified that the server was on an external node, and
an Ethernet socket was created and assigned to the client,
instead of using inter-process communication. The client can
communicate with external nodes through this socket, and even
with a change in the communication method, it is not necessary
to change the application because the change is handled by the
SOME/IP daemon. This is one of the advantages of ara::com.
Finally, the Adaptive client node was executed to verify that the
SOME/IP event data was successfully received from the Classic
server over Ethernet.

Through this proof of concept, communication between the
Classic server and the Adaptive client via event data using
actual Ethernet communication was verified.

Figure 12 Setup to test the communication between AUTOSAR Classic
server and Adaptive client

V. CONCLUSION

AUTOSAR Classic and Adaptive Platforms are expected to be
key enablers for the software-defined autonomous vehicles of
the future, handling both safety-critical real-time applications
and demanding ADAS/AD, infotainment, and Vehicle-2-X
applications of the future. The complementary nature of the two
platforms demands methodologies that integrate and test
Classic and Adaptive applications efficiently. This paper
described how model-based design development
methodologies can be used to develop AUTOSAR Classic and
Adaptive applications based on SOME/IP events. The paper
also demonstrated a workflow from ECU software development
to integration with a third-party Basic Software stack, including
testing of communication between an AUTOSAR Classic
server and an Adaptive client application using real Ethernet
communication.

REFERENCES

1. https://www.autosar.org/standards/
2. https://some-ip.com/
3. AUTOSAR Classic software component modeling

https://www.mathworks.com/help/autosar/software-
component-modeling.html?s_tid=CRUX_lftnav

4. AUTOSAR Adaptive software component modeling
https://www.mathworks.com/help/autosar/adaptive-
software-component-
modeling.html?s_tid=CRUX_lftnav

5. Simulink Messages Overview
https://www.mathworks.com/help/simulink/ug/simuli
nk-messages-overview.html

6. Explanation of ara::com API
https://www.autosar.org/fileadmin/user_upload/stand
ards/adaptive/17-
03/AUTOSAR_EXP_ARAComAPI.pdf

233

© 2022 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /DEU <FFFE5B004200610073006900650072007400200061007500660020002200500072006F006700720061006D006D0022005D0020005B0042006100730069006500720074002000610075006600200022004E006500770073006C006500740074006500720022005D0020005B004200610073006900650072007400200061007500660020002200480061006E00640062007500630068005F0052004700420022005D0020005B0042006100730069006500720074002000610075006600200022005B005100750061006C00690074006100740069007600200068006F006300680077006500720074006900670065007200200044007200750063006B005D0022005D002000560065007200770065006E00640065006E0020005300690065002000640069006500730065002000450069006E007300740065006C006C0075006E00670065006E0020007A0075006D002000450072007300740065006C006C0065006E00200076006F006E002000410064006F006200650020005000440046002D0044006F006B0075006D0065006E00740065006E002C00200076006F006E002000640065006E0065006E002000530069006500200068006F00630068007700650072007400690067006500200044007200750063006B006500200061007500660020004400650073006B0074006F0070002D0044007200750063006B00650072006E00200075006E0064002000500072006F006F0066002D00470065007200E400740065006E002000650072007A0065007500670065006E0020006D00F60063006800740065006E002E002000450072007300740065006C006C007400650020005000440046002D0044006F006B0075006D0065006E007400650020006B00F6006E006E0065006E0020006D006900740020004100630072006F00620061007400200075006E0064002000410064006F00620065002000520065006100640065007200200035002E00300020006F0064006500720020006800F600680065007200200067006500F600660066006E00650074002000770065007200640065006E002E00>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /DocumentRGB
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

