
Reinforcement Learning with MATLAB

Table of Contents
1. The Basics and Setting Up the Environment

2. Rewards and Policy Structures

3. Training and Deployment

Part 1: The Basics and
Setting Up the Environment

Reinforcement Learning with MATLAB | 4

What Is Reinforcement Learning?

Reinforcement learning is learning what to do—how to map
situations to actions—so as to maximize a numerical reward
signal. The learner is not told which actions to take, but instead
must discover which actions yield the most reward by trying them.
—Sutton and Barto, Reinforcement Learning: An Introduction

Reinforcement learning (RL) has successfully trained
computer programs to play games at a level higher than the
world’s best human players.

These programs find the best action to take in games with
large state and action spaces, imperfect world information,
and uncertainty around how short-term actions pay off in the
long run.

Engineers face the same types of challenges when designing
controllers for real systems. Can reinforcement learning also
help solve complex control problems like making a robot walk
or driving an autonomous car?

This ebook answers that question by explaining what RL is
in the context of traditional control problems and helps you
understand how to set up and solve the RL problem.

http://incompleteideas.net/book/the-book.html

Reinforcement Learning with MATLAB | 5

The Goal of Control

Broadly speaking, the goal of a control system is to determine the
correct inputs (actions) into a system that will generate the desired
system behavior.

With feedback control systems, the controller uses state observations
to improve performance and correct for random disturbances and
errors. Engineers use that feedback, along with a model of the
plant and environment, to design the controller to meet the system
requirements.

This concept is simple to put into words, but it can quickly become
difficult to achieve when the system is hard to model, is highly
nonlinear, or has large state and action spaces.

Reinforcement Learning with MATLAB | 6

The Control Problem

To understand how complexity complicates a control design problem,
imagine developing a control system for a walking robot.

To control the robot (i.e., the system), you command potentially dozens
of motors that operate each of the joints in the arms and legs.

Each command is an action you can take. The state observations
come from multiple sources, including a camera vision sensor,
accelerometers, gyros, and encoders for each of the motors.

The controller has to satisfy multiple requirements:

• Determine the right combination of motor torques to get the robot
walking and keep it balanced.

• Operate in an environment that has random obstacles that
need to be avoided.

• Reject disturbances like wind gusts.

A control system design would need to handle these as well as any
additional requirements like maintaining balance while walking down
a steep hillside or across a patch of ice.

Reinforcement Learning with MATLAB | 7

The Control Solution

Typically, the best way to approach this problem is to break it up into
smaller discrete sections that can be solved independently.

For example, you could build a process that extracts features from
the camera images. These might be things like the location and type
of obstacle, or the location of the robot in a global reference frame.
Combine those states with the processed observations from the other
sensors to complete the full state estimation.

The estimated state and the reference would feed into the controller,
which would likely consist of multiple nested control loops. The outer

loop would be responsible for managing high-level robot behavior (like
maybe maintaining balance), and the inner loops manage low-level
behaviors and individual actuators.

All solved? Not quite.

The loops interact with each other, which makes design and tuning
challenging. Also, determining the best way to structure these loops
and break up the problem is not simple.

Reinforcement Learning with MATLAB | 8

The Appeal of Reinforcement Learning

Instead of trying to design each of these components separately,
imagine squeezing everything into a single function that takes in all of
the observations and outputs the low-level actions directly.

This certainly simplifies the block diagram, but what would this function
look like and how would you design it?

It might seem like creating this single large function would be more
difficult than building a control system with piecewise subcomponents;
however, this is where reinforcement learning can help.

Reinforcement Learning with MATLAB | 9

Reinforcement Learning: A Subset of Machine Learning

Reinforcement learning is one of three broad categories of machine learning. This ebook does not focus on unsupervised or supervised learning,
but it is worth understanding how reinforcement learning differs from these two.

Reinforcement Learning with MATLAB | 10

Machine Learning: Unsupervised Learning

Unsupervised learning is used to find patterns or hidden structures in datasets that have not been categorized or labeled.

For example, say you have information on the physical attributes and social tendencies of 100,000 animals. You could use unsupervised learning
to group the animals or cluster them into similar features. These groups could be based on number of legs, or based on patterns that might not be
as obvious, such as correlations between physical traits and social behavior that you didn’t know about ahead of time.

Reinforcement Learning with MATLAB | 11

Machine Learning: Supervised Learning

Using supervised learning, you train the computer to apply a label to a given input. For example, if one of the columns of your dataset of animal
features is the species, you can treat species as the label and the rest of the data as inputs into a mathematical model.

You could use supervised learning to train the model to correctly label each set of animal features in your dataset. The model guesses the
species, and then the machine learning algorithm systematically tweaks the model.

With enough training data to get a reliable model, you could then input the features for a new, unlabeled animal, and the trained model would
apply the most probable species label to it.

Reinforcement Learning with MATLAB | 12

Machine Learning: Reinforcement Learning

Reinforcement learning is a different beast altogether. Unlike the other two learning frameworks, which operate using a static dataset, RL works
with data from a dynamic environment. And the goal is not to cluster data or label data, but to find the best sequence of actions that will generate
the optimal outcome. The way reinforcement learning solves this problem is by allowing a piece of software called an agent to explore, interact
with, and learn from the environment.

The agent is able to observe the current state
of the environment.

The environment changes state and produces a reward for
that action. Both of which are received by the agent.

From the observed state, it decides which action to take.

Using this new information, the agent can determine whether that action was
good and should be repeated, or if it was bad and should be avoided.

The observation-action-reward cycle continues until learning is complete.

Reinforcement Learning with MATLAB | 13

Anatomy of Reinforcement Learning

Within the agent, there is a function that takes in state observations
(the inputs) and maps them to actions (the outputs). This is the single
function discussed earlier that will take the place of all of the individual
subcomponents of your control system. In the RL nomenclature, this
function is called the policy. Given a set of observations, the policy
decides which action to take.

In the walking robot example, the observations would be the angle of
every joint, the acceleration and angular velocity of the robot trunk, and
the thousands of pixels from the vision sensor. The policy would take
in all of these observations and output the motor commands that will
move the robot’s arms and legs.

The environment would then generate a reward telling the agent how
well the very specific combination of actuator commands did. If the
robot stays upright and continues walking, the reward will be higher
than if the robot falls to the ground.

Reinforcement Learning with MATLAB | 14

Learning the Optimal Policy

If you were able to design a perfect policy that would correctly
command the right actuators for every observed state, then your job
would be done.

Of course, that would be difficult to do in most situations. Even if you
did find the perfect policy, the environment might change over time, so
a static mapping would no longer be optimal.

This brings us to the reinforcement learning algorithm.

It changes the policy based on the actions taken, the observations
from the environment, and the amount of reward collected.

The goal of the agent is to use reinforcement learning algorithms to
learn the best policy as it interacts with the environment so that, given
any state, it will always take the most optimal action—the one that will
produce the most reward in the long run.

Reinforcement Learning with MATLAB | 15

What Does It Mean to Learn?

To understand what it means for a machine to learn, think
about what a policy actually is: a function made up of logic
and tunable parameters.

Given a sufficient policy structure (logical structure),
there is a set of parameters that will produce an optimal
policy—a mapping of states to actions that produces the
most long-term reward.

Learning is the term given to the process of systematically
adjusting those parameters to converge on the optimal
policy.

In this way, you can focus on setting up an adequate
policy structure without manually tuning the function to get
the right parameters.

You can let the computer learn the parameters on its own
through a process that will be covered later on, but for now
you can think of as fancy trial and error.

Reinforcement Learning with MATLAB | 16

How Is Reinforcement Learning Similar to Traditional Controls?

The goal of reinforcement learning is similar to the control
problem; it’s just a different approach and uses different
terms to represent the same concepts.

With both methods, you want to determine the correct
inputs into a system that will generate the desired system
behavior.

You are trying to figure out how to design the policy
(or the controller) that maps the observed state of the
environment (or the plant) to the best actions (the actuator
commands).

The state feedback signal is the observations from the
environment, and the reference signal is built into both the
reward function and the environment observations.

Reinforcement Learning with MATLAB | 17

Reinforcement Learning Workflow Overview

In general, five different areas need to be addressed with reinforcement learning. This ebook focuses on the first area, setting up the environment.
Other ebooks in this series will explore reward, policy, training, and deployment in more depth.

You need an environment where your agent can learn. You need to choose what
should exist within the environment and whether it’s a simulation or a physical setup.

You need to choose a way to represent the policy.
Consider how you want to structure the parameters
and logic that make up the decision-making part

of the agent.

You need to think about what you ultimately want your agent to do and
craft a reward function that will incentivize the agent to do just that.

You need to choose an algorithm to train the agent
that works to find the optimal policy parameters.

Finally, you need to exploit the policy by deploying
it in the field and verifying the results.

Reinforcement Learning with MATLAB | 18

Environment

The environment is everything that exists outside of the agent. It is where the agent sends actions,
and it is what generates rewards and observations.

This definition can be confusing if you’re coming from a controls perspective
because you may tend to think of the environment as disturbances that impact the
system you’re trying to control.

However, in reinforcement learning nomenclature, the environment is everything
but the agent. This includes the system dynamics. In this way, most of the
system is actually part of the environment. The agent is just the bit of software
that is generating the actions and updating the policy through learning.

Reinforcement Learning with MATLAB | 19

Model-Free Reinforcement Learning

One reason reinforcement learning is so powerful is that the agent
does not need to know anything about the environment. It can still
learn how to interact with it. For example, the agent doesn’t need to
know the dynamics or kinematics of the walking robot. It will still figure
out how to collect the most reward without knowing how the joints
move or the lengths of the appendages.

This is called model-free reinforcement learning.

With model-free RL, you can put an RL-equipped agent into any
system and the agent will be able to learn the optimal policy. (This
assumes you’ve given the policy access to the observations, rewards,
actions, and enough internal states.)

Reinforcement Learning with MATLAB | 20

Model-Based Reinforcement Learning

Here is the problem with model-free RL. If the agent has no understanding of the environment,
then it must explore all areas of the state space to figure out how to collect the most reward.

This means the agent will need to spend some time exploring low-reward areas during the
learning process.

However, you may know some parts of the state space that are not worth exploring.
By providing a model of the environment, or part of the environment, you provide the
agent with this knowledge.

Using a model, the agent can explore parts of the environment without having to physically take
that action. A model can complement the learning process by avoiding areas that are known to
be bad and exploring the rest.

Reinforcement Learning with MATLAB | 21

Model Free vs. Model Based

Model-based reinforcement learning can lower the time it takes to learn
an optimal policy because you can use the model to guide the agent
away from areas of the state space that you know have low rewards.

You don’t want the agent to reach these low-reward states in the first
place, so you don’t need it to spend time learning what the best actions
would be in those states.

With model-based reinforcement learning, you don’t need to know the
full environment model; you can provide the agent with just the parts of
the environment you know.

Model-free reinforcement learning is the more general case and will be
the focus for the rest of this ebook.

If you understand the basics of reinforcement learning without a model,
then continuing on to model-based RL is more intuitive.

Model-free RL is popular right now because people hope to use
it to solve problems where developing a model—even a simple
one—is difficult. An example is controlling a car or a robot from pixel
observations. It’s not intuitively obvious how pixel intensities relate to
car or robot actions in most situations.

Reinforcement Learning with MATLAB | 22

Real vs. Simulated Environments

Since the agent learns through interaction with the environment, you need a way for the agent to actually interact with it. This might be a real
physical environment or a simulation, and choosing between the two depends on the situation.

Real
Accuracy: Nothing represents the environment more completely than
the real environment.

Simplicity: There is no need to spend the time creating and validating
a model.

Necessary: It might be necessary to train with the real environment if it
is constantly changing or difficult to model accurately.

Simulated
Speed: Simulations can run faster than real time or be parallelized,
speeding up a slow learning process.

Simulated conditions: It is easier to model situations that would be
difficult to test.

Safety: There is no risk of damage to hardware.

Reinforcement Learning with MATLAB | 23

Real vs. Simulated Environments

For example, you could let an agent learn how to balance an inverted
pendulum by running it with a physical pendulum setup. This might be
a good solution since it’s probably hard for the hardware to damage
itself or others. Since the state and action spaces are relatively small, it
probably won’t take too long to train.

With the walking robot this might not be such a good idea. If the policy
is not sufficiently optimal when you start training, the robot is going
to do a lot of falling and flailing before it even learns how to move its
legs, let alone how to walk. Not only could this damage the hardware,
but having to pick the robot up each time would be extremely time
consuming. Not ideal.

Reinforcement Learning with MATLAB | 24

Benefits of a Simulated Environment

Simulated environments are the most common way to train an agent. One nice benefit for control problems is that you usually already have a
good model of the system and environment since you typically need it for traditional control design. If you already have a model built in MATLAB®
or Simulink®, you can replace your existing controller with a reinforcement learning agent, add a reward function to the environment, and start the
learning process.

Learning is a process that requires lots of samples: trials, errors, and
corrections. It is very inefficient in this sense because it can take
thousands or millions of episodes to converge on an optimal solution.

A model of the environment may run faster than real time, and you can
spin up lots of simulations to run in parallel. Both of these approaches
can speed up the learning process.

You have a lot more control over simulating conditions than you do exposing your agent
to them in the real world.

For example, your robot may have to be capable of walking on any number of different surfaces.
Simulating walking on a low-friction surface like ice is much simpler than testing on actual ice.
Additionally, training an agent in a low-friction environment would actually help the robot stay
upright on all surfaces. It’s possible to create a better training environment with simulation.

Reinforcement Learning with MATLAB | 25

Reinforcement Learning with MATLAB and Simulink

Reinforcement Learning Toolbox provides functions and blocks for
training policies using reinforcement learning algorithms. You can use
these policies to implement controllers and decision-making algorithms
for complex systems such as robots and autonomous systems.
The toolbox lets you train policies by enabling them to interact with
environments represented in MATLAB or using Simulink models.

For example, for defining reinforcement learning environments in
MATLAB, you can use provided template scripts and classes and
modify the environment dynamics, reward, observations, and actions
as needed depending on the application.

In Simulink, you can model the many different types of environments
that are often needed to solve controls and reinforcement learning
problems. For example, you can model vehicle dynamics and flight
dynamics; a variety of physical systems with Simscape™; dynamics
approximated from measured data with System Identification
Toolbox™; sensors such as radars, lidars, and IMUs; and more.

mathworks.com/products/reinforcement-learning

http://www.mathworks.com/products/reinforcement-learning

Learn More

Watch
What Is Reinforcement Learning? (14:05)

Understanding the Environment and Rewards (13:27)
Modeling and Simulation of Walking Robots (21:19)

Explore
Getting Started with Reinforcement Learning Toolbox

Creating Environments in MATLAB

Creating Environments in Simulink
Modeling Flight Dynamics in Simulink
Simulating Full Vehicle Dynamics in Simulink

https://www.mathworks.com/videos/reinforcement-learning-part-1-what-is-reinforcement-learning-1551974943006.html
https://www.mathworks.com/videos/reinforcement-learning-part-2-understanding-the-environment-and-rewards-1551976590603.html
https://www.mathworks.com/videos/modeling-and-simulation-of-walking-robots-1576560207573.html
https://www.mathworks.com/help/reinforcement-learning/getting-started-with-reinforcement-learning-toolbox.html
https://www.mathworks.com/help/reinforcement-learning/matlab-environments.html
https://www.mathworks.com/help/reinforcement-learning/simulink-environments.html
https://www.mathworks.com/help/aeroblks/nasa-hl-20-lifting-body-airframe.html
https://www.mathworks.com/help/physmod/sdl/ug/about-the-complete-vehicle-model.html

Part 2: Rewards and Policy Structures

Reinforcement Learning with MATLAB | 28

The Reward

With the environment set, the next step is to think about what you want your agent to do and how you’ll reward it for doing what you want.
This requires crafting a reward function so that the learning algorithm “understands” when the policy is getting better and ultimately converges
on the result you’re looking for.

Reinforcement Learning with MATLAB | 29

What Is Reward?

Reward is a function that produces a scalar number that represents the “goodness” of an agent being in a particular state and taking
a particular action.

The concept is similar to the cost function in LQR, which penalizes bad system performance and increased actuator effort. The difference, of
course, is that a cost function is trying to minimize the value, whereas a reward function tries to maximize the value. But this is solving the same
problem since rewards can be thought of as the negative of cost.

The main difference is that unlike LQR, where the cost function is
quadratic, in reinforcement learning (RL) there’s really no restriction on
creating a reward function. You can have sparse rewards, or rewards
every time step, or rewards that only come at the very end of an
episode after long periods of time. Rewards can be calculated from
a nonlinear function or calculated using thousands of parameters. It
completely depends on what it takes to effectively train your agent.

Reinforcement Learning with MATLAB | 30

Sparse Rewards

Since there are no constraints on how you create your reward function,
you can get into situations where the rewards are sparse. This means
that the goal you want to incentivize comes after a long sequence of
actions. This would be the case for the walking robot if you set up the
reward function such that the agent only receives a reward after the
robot successfully walks 10 meters. Since that is ultimately what you
want the robot to do, it makes perfect sense to set up the reward
like this.

The problem with sparse rewards is that your agent may stumble
around for long periods of time, trying different actions and visiting
a lot of different states without receiving any rewards along the way
and, therefore, not learning anything in the process. The chance that
your agent will randomly stumble on the exact action sequence that
produces the sparse reward is very unlikely. Imagine the luck needed
to generate all of the correct motor commands to keep a robot upright
and walking 10 meters rather than just flopping around on the ground!

Reinforcement Learning with MATLAB | 31

Reward Shaping

You can improve sparse rewards through reward shaping—providing smaller intermediate rewards that guide the agent along the right path.

Reward shaping, however, comes with its own set of problems. If you give an optimization algorithm a shortcut, it’ll take it! And shortcuts are
hidden within reward functions—more so when you start shaping them. A poorly shaped reward function might cause your agent to converge
on a solution that is not ideal, even if that solution produces the most rewards for the agent. It might seem like our intermediate rewards will
guide the robot to successfully walk toward the 10 meter goal, but the optimal solution might not be to walk to that first reward. Instead it may
fall ungracefully toward it, collect the reward, thereby reinforcing that behavior. Beyond that, the robot might converge on inchworming along the
ground to collect the rest of the reward. To the agent, that is a perfectly reasonable high-reward solution, but obviously to the designer it’s not a
preferred result.

Reinforcement Learning with MATLAB | 32

Domain-Specific Knowledge

Reward shaping isn’t always used to fill in for sparse rewards. It is also a way that engineers can inject domain-specific knowledge into the agent.
For example, if you know that you want the robot to walk, rather than crawl along the ground, you can reward the agent for keeping the trunk of
the robot at a walking height. You could also reward low actuator effort, staying on its feet longer, and not straying from the intended path.

This is not intended to make crafting a reward function sound easy; getting it right is possibly one of the more difficult tasks in reinforcement
learning. For example, you might not know if your reward function is poorly crafted until after you’ve spent a lot of time training your agent and it
failed to produce the results you were looking for. However, with this general overview, you’ll be in a better position to at least understand some of
the things that you need to watch out for and that might make crafting the reward function a little easier.

Reinforcement Learning with MATLAB | 33

Exploration vs. Exploitation

A critical aspect of reinforcement learning is the tradeoff between
exploration and exploitation while an agent interacts with an
environment. The reason this decision comes up with reinforcement
learning is that learning is done online. Instead of working from a static
dataset, the agent’s actions determine which data is returned from the
environment. The choices the agent makes determine the information
it receives and, therefore, the information from which it
can learn.

The idea is this: Should the agent exploit the environment by choosing
the actions that collect the most rewards that it already knows about, or
should it choose actions that explore parts of the environment that are
still unknown?

Reinforcement Learning with MATLAB | 34

The Problem with Pure Exploitation

For example, let’s say an agent is in a particular state and it can take one of two actions: go left or go right. It knows that going left will produce
+1 reward and going right produces -1 reward. The agent doesn’t know anything else about the environment to the right of that initial low-reward
state. If the agent takes the greedy approach by always exploiting the environment, it would go left to collect the highest reward it knows about
and ignore the other states completely.

So you can see that if the agent is always exploiting what it thinks is the best action at any given time, it may never receive additional information
about the states that exist beyond a low-reward action. This pure exploitation can increase the amount of time it takes to find the optimal policy or
may cause the learning algorithm to converge on a suboptimal policy since whole sections of the state space may never be explored.

Reinforcement Learning with MATLAB | 35

The Problem with Pure Exploration

Instead, if you occasionally let the agent explore, even
at the risk of collecting fewer rewards, it can expand its
policy for the new states. This opens up the possibility of
finding higher rewards it didn’t know about and increases
the chances of converging on the global solution. But
you don’t want the agent to explore too much because
there is a downside with this approach as well. For one,
pure exploration is not a good approach when training
on physical hardware because the agent runs a risk of
exploring an action that causes damage. Think about the
damage that can be caused by an autonomous car that is
exploring random steering wheel inputs while on
the highway.

However, even with a simulated environment where damage isn’t an issue, pure exploration is not an efficient way to learn because the agent will
likely spend time covering a bigger portion of the state space. While this is beneficial for finding a global solution, excessive exploration can slow
the learning rate by so much that no sufficient solution is found in a reasonable amount of learning time. Therefore, the best learning algorithms
strike a balance between exploring and exploiting the environment.

Reinforcement Learning with MATLAB | 36

Balancing Exploration and Exploitation

One lifetime would probably not be enough to explore
every possible career option. Therefore, students will have
to decide on the most optimal career path of the options
they’ve explored so far. If they put off exploiting their
knowledge for too long and continue to explore new career
options, then there won’t be as much time available to
collect the return on their effort.

Even though reinforcement learning algorithms provide a
simple way to balance exploration and exploitation, it might
not be obvious where to set that balance throughout the
learning process so that the agent settles on a sufficient
policy within the time allotted for learning. In general,
however, an agent explores more at the start of learning
and gradually transitions to more of an exploitation role by
the end, just like the students.

Consider how student might approach choosing a career path. When students are young, they explore different subjects and classes and are
generally open to new experiences. After a certain amount of exploration, they are then likely to converge on learning more about a specialized
subject and then finally converge on a career that they feel will have the highest combination of financial return and job satisfaction (reward).

Reinforcement Learning with MATLAB | 37

The Value of Value

A second critical aspect of reinforcement learning is the concept of value. Assessing the value of a state or an action, rather than reward, helps
the agent choose the action that will collect the most rewards over time rather than a short-term benefit.

reward: the instantaneous benefit of being in a state and taking a specific action

value: the total rewards an agent expects to receive from a state and onwards into the future

For example, imagine our agent is trying to collect the
most rewards within two steps. If the agent looks only at
the reward for each action, it will step left first since that
produces a higher reward than right. Then it’ll go back
right since that again is the highest reward, to ultimately
collect a total of +1.

However, if the agent is able to estimate the value of a
state, then it will see that going right has a higher value
than going left even though the reward is lower. Using
value as its guide, the agent will ultimately end up with
+4 total reward.

Reinforcement Learning with MATLAB | 38

The Benefit of Being Short-Sighted

Of course, the promise of receiving a high reward after many sequential actions doesn’t mean that the first action is necessarily the best; there
are at least two good reasons for this.

And second, your prediction of rewards further into the future becomes
less reliable; therefore, that high reward might not be there by the time
the agent reaches it.

First, like with the financial market, money in your pocket now can be
better than a little more money in your pocket a year from now.

In both of these cases, it’s advantageous to be a little more short-sighted when estimating value. In reinforcement learning, you can set how
short-sighted you want your agent to be by discounting rewards by a larger amount the further they are in the future. This is done by setting the
discount factor, gamma, between 0 and 1.

Reinforcement Learning with MATLAB | 39

What Is the Policy?

Now that you understand the environment and its role in providing
the state and the rewards, you’re ready to start work on the agent
itself. The agent is composed of the policy and the learning algorithm.
The policy is the function that maps observations to actions, and the
learning algorithm is the optimization method used to find the
optimal policy.

Reinforcement Learning with MATLAB | 40

Representing a Policy

At the most basic level, a policy is a function that takes in state observations and outputs actions. So if you’re looking for ways to represent a
policy, any function with that input and output relationship can work.

In general, there are two approaches for structuring the policy function:
• Direct: There is a specific mapping between state observations and action.
• Indirect: You look at other metrics like value to infer the optimal mapping.*

The next few pages show how to use a value-based method to highlight the different types of mathematical structures you can use to represent a
policy. But keep in mind that these structures can be applied to policy-based functions as well.

* Spoiler alert! You can combine the benefits of direct policy mapping and value-based mapping in a third method called actor-critic,
which will be covered a bit later.

Reinforcement Learning with MATLAB | 41

Representing a Policy with a Table

If the state and action spaces for the environment are discrete and few in number, you could use a simple table to represent policies.

Tables are exactly what you’d expect: an array of numbers where an
input acts as a lookup address and the output is the corresponding
number in the table. One type of table-based function is the Q-table,
which maps states and actions to value.

With a Q-table, the policy is to check the value of every possible action
given the current state and then choose the action with the highest
value. Training an agent with a Q-table would consist of determining
the correct values for each state/action pair in the table. Once the
table has been fully populated with the correct values, choosing the
action that will produce the most long-term return of reward is pretty
straightforward.

Reinforcement Learning with MATLAB | 42

Continuous State/Action Spaces

Representing policy parameters in a table is not feasible when the
number of state/action pairs becomes large or infinite. This is the so-
called curse of dimensionality. To get a feel for this, let’s think about
a policy that could control an inverted pendulum. The state of the
pendulum can be any angle from -π to π and any angular rate. Also,
the action space is any motor torque from the negative limit to the
positive limit. Trying to capture every combination of every state and
action in a table is impossible.

You could represent the continuous nature of the inverted pendulum with a continuous function—something that takes in states and outputs
actions. However, before you could start learning the right parameters in this function, you would need to define the logical structure. This might
be difficult to craft for high-degree-of-freedom systems or nonlinear systems.

So you need a way to represent a function that can handle continuous states and actions, and one that doesn’t require a difficult-to-craft logical
structure for every environment. This is where neural networks come in.

Reinforcement Learning with MATLAB | 43

A Universal Function Approximator

A neural network is a group of nodes, or artificial neurons, that are connected in a way that allows them to be a universal function approximator.
This means that given the right combination of nodes and connections, you can set up the network to mimic any input and output relationship.
Even though the function might be extremely complex, the universal nature of neural networks ensures that there is a neural network of some
kind that can achieve it.

So instead of trying to find the perfect nonlinear function structure that works with a specific environment, with a neural network you can use the
same combination of nodes and connections in many different environments. The only difference is in the parameters themselves. The learning
process would then consist of systematically adjusting the parameters to find the optimal input/output relationship.

Reinforcement Learning with MATLAB | 44

What Is a Neural Network?

The mathematics of neural networks are not covered in depth here. But it’s important to highlight a few things to help explain some of the
decisions later on when setting up the policies.

On the left are the input nodes, one for each input to the function, and on the right are the output nodes. In between are columns of nodes called
hidden layers. This network has 2 inputs, 2 outputs, and 2 hidden layers of 3 nodes each. With a fully connected network, there is a weighted
connection from each input node to each node in the next layer, and then from those nodes to the layer after that, and again until the output
nodes.

Reinforcement Learning with MATLAB | 45

The Math Behind the Graphic

The value of any given node is equal to the sum of every node that feeds into it multiplied by its respective weighting factor plus a bias.

You can perform this calculation for every node in a layer and write it out in a compact matrix form as a system of linear equations. This set of
matrix operations essentially transforms the numerical values of the nodes in one layer to the values of the nodes in the next layer.

Reinforcement Learning with MATLAB | 46

The Missing Crucial Step

How can a bunch of linear equations operating one after another act as a universal function approximator? Specifically, how can they represent a
nonlinear function? Well, there’s a step that is possibly one of the most important aspects of an artificial neural network. After the value of a node
has been calculated, an activation function is applied that changes the value of the node prior to it being fed as an input into the next layer.

There are a number of different activation functions. What they all have in common is that they are nonlinear, which is critical to making a network
that can approximate any function. Why is this the case? Because many nonlinear functions can be broken down into a weighted combination of
activation function outputs.

For more detail, read Visualizing the Universal Approximation Theorem.

https://towardsdatascience.com/can-neural-networks-really-learn-any-function-65e106617fc6

Reinforcement Learning with MATLAB | 47

ReLU and Sigmoid Activations

The sigmoid activation function generates a smooth curve in a way that
any input between negative and positive infinity is squished down to
between 0 and 1.

The rectified linear unit (ReLU) function zeroes out any negative node
values and leaves the positive values unmodified.

As an example, a pre-activation node value of -2 would become 0.12
with a sigmoid activation and 0 with a ReLU activation.

Reinforcement Learning with MATLAB | 48

Representing a Policy with a Neural Network

Let’s recap before moving on. You want to find a function that can take in a large number of observations and transform them into a set of
actions that will control some nonlinear environment. And since the structure of this function is often too complex to solve for directly, you want to
approximate it with a neural network that learns the function over time. And it’s tempting to think that you can just plug in any neural network and let
loose a reinforcement learning algorithm to find the right combination of weights and biases and be done. Unfortunately, that’s not quite the case.

Reinforcement Learning with MATLAB | 49

Neural Network Structures

You have to make a few choices about the neural network ahead of time in order to make sure it’s complex enough to approximate the function
you’re looking for, but not so complex as to make training impossible or impossibly slow. For example, as you’ve already seen, you need to
choose an activation function, the number of hidden layers, and the number of neurons in each layer. But beyond that you also have control over
the internal structure of the network. Should it be fully connected like the network you started with, or should the connections skip layers like in a
residual neural network? Should it loop back on itself to create internal memory with recurrent neural networks? Should groups of neurons work
together like with a convolutional neural network?

As with other control techniques, there isn’t one right approach for settling on a neural network structure. A lot of it comes down to starting with a
structure that has already worked for the type of problem you’re trying to solve and tweaking it from there.

Reinforcement Learning with MATLAB | 50

Reinforcement Learning with MATLAB

Reinforcement Learning Toolbox™ provides functions and blocks for
training policies using reinforcement learning algorithms. You can use
these policies to implement controllers and decision-making algorithms
for complex systems such as robots and autonomous systems.

The toolbox lets you implement policies using deep neural networks,
polynomials, or lookup tables. You can then train policies by enabling
them to interact with environments represented by MATLAB or
Simulink models.

Deep Q-learning network (DQN) agent created with the Deep Network Designer app.

https://www.mathworks.com/products/reinforcement-learning.html

Learn More

Reinforcement Learning Toolbox - Overview

Understanding Policies and Learning Algorithms (17:50) - Video

Defining Reward Signals in MATLAB and Simulink - Documentation

Policy and Value Function Representations - Documentation

Reference Examples for Getting Started - Examples

http://www.mathworks.com/products/reinforcement-learning.html
https://www.mathworks.com/videos/reinforcement-learning-part-3-policies-and-learning-algorithms-1554395009678.html
https://www.mathworks.com/help/reinforcement-learning/ug/define-reward-signals.html
https://www.mathworks.com/help/reinforcement-learning/policies-and-value-functions.html
https://www.mathworks.com/help/reinforcement-learning/examples.html?category=getting-started-with-reinforcement-learning-toolbox&s_tid=CRUX_gn_example

Part 3: Training and Deployment

Reinforcement Learning with MATLAB | 54

How the Policy Is Structured

In a reinforcement learning (RL) algorithm, neural networks
represent the policy in the agent. The policy structure and the
reinforcement learning algorithm are intimately intertwined;
you can’t structure the policy without also choosing the RL
algorithm.

The next few pages will describe policy function–based, value function–
based, and actor-critic approaches to reinforcement learning to
highlight the differences in the policy structures. This will definitely be
an oversimplification, but if you want a basic understanding of the ways
policies can be structured, it should help you get started.

Reinforcement Learning with MATLAB | 55

Policy Function–Based Learning

Policy function–based learning algorithms train a neural network
that takes in the state observations and outputs actions. This neural
network is the entire policy—hence the name policy function–based
algorithms. The neural network is called the actor because it directly
tells the agent which actions to take.

The question now is, how do we approach training this neural network?
To get a general feel for how this is done, take a look at the Atari game
Breakout.

Reinforcement Learning with MATLAB | 56

The Policy Approach to Learning Breakout

Breakout is a game in which you try to eliminate bricks using a paddle
to direct a bouncing ball. The game has three actions, move the paddle
left, right, or not at all, and a near-continuous state space that includes
the position of the paddle, the position and velocity of the ball, and the
location of the remaining bricks.

In this example, the inputs into the actor network are the
states of the paddle, ball, and blocks. The outputs are nodes
representing the actions: left, right, and stay. Rather than
calculating the states manually and feeding them into the
network, you can input a screen shot of the game and let
the network learn which features in the image are the most
important to base its output on. The actor would map the
intensity of thousands of pixels to the three outputs.

Reinforcement Learning with MATLAB | 57

A Stochastic Policy

Once the network is set, it’s time to look at approaches to training it.
One broad approach that itself has a lot of variations is policy gradient
methods. Policy gradient methods can work with a stochastic policy,
so rather than producing a deterministic “Take a left,” the policy would
output the probability of taking a left. The probabilities are directly
related to the value of the three output nodes.

Should the agent exploit the environment by choosing the actions that collect the
most rewards that it already knows about, or should it choose actions that explore
parts of the environment that are still unknown?

A stochastic policy addresses this tradeoff by building exploration into the
probabilities. Now, when the agent learns, it just needs to update the probabilities.
Is taking a left a better option than taking a right? If so, push the probability that you
take a left in this state higher.

Over time, the agent will nudge these probabilities in the direction that produces
the most reward. Eventually, the most advantageous action for every state will have
such a high probability that the agent always takes that action.

Reinforcement Learning with MATLAB | 58

Policy Gradient Methods

So how does the agent know whether the actions were good or not? The idea is
this: execute the current policy, collect reward along the way, and then update the
network to increase the probabilities of actions that led to higher rewards.

If the paddle went left, missing the ball and causing a negative reward, then change
the neural network to increase the probability of moving the paddle right next time
the agent is in that state.

You take the derivative of each weight and bias in the network with
respect to reward, and adjust them in the direction of a positive reward
increase. In this way, the learning algorithm is moving the weights and
biases of the network to ascend up the reward slope. This is why the
term gradient is used in the name.

Reinforcement Learning with MATLAB | 59

The Downside of Policy Gradient Methods

One of the downsides of policy gradient methods is that the naive
approach of just following the direction of steepest ascent can converge
on a local maxima rather than global. Policy gradient methods can also
converge slowly due to their sensitivity to noisy measurements, which
happens, for example, when it takes a lot of sequential actions to receive
a reward and the resulting cumulative reward has high variance
between episodes.

For example, in Breakout the agent might make a lot of quick left and right
paddle movements as the paddle ultimately works its way across the field
to strike the ball and receive a reward. The agent wouldn’t know if every
single one of those actions was actually required to get that reward, so the
policy gradient algorithm would have to treat each action as though it was
necessary and adjust the probabilities accordingly.

Reinforcement Learning with MATLAB | 60

Value Function–Based Learning

With a value function–based agent, a function would take in the state
and one of the possible actions from that state, and output the value of
taking that action.

This function alone is not enough to represent the policy since it
outputs a value and the policy needs to output an action. Therefore,
the policy would be to use this function to check the value of every
possible action from a given state and choose the action with the
highest value.

You can think of this function as a critic since it’s looking at the possible
actions and criticizing the agent’s choices.

Reinforcement Learning with MATLAB | 61

Value Functions and Grid World

To see how this would work in practice, here’s an example using the
Grid World environment.

In this environment, there are two discrete state variables: the X grid
location and the Y grid location. The agent can only move one square
at a time either up, down, left, or right, and each action it takes results
in a reward of -1.

If the agent tries to move off the grid or into one of the black obstacles,
then the agent doesn’t move into the new state but the -1 reward is still
received. In this way, the agent is penalized for essentially running into
a wall and it doesn’t make any physical progress for that effort.

There is one state that produces a +10 reward; the idea is that in order
to collect the most reward, the agent needs to learn the policy that will
get it to the +10 in the fewest moves possible.

 » See how to solve a Grid World environment in MATLAB

https://www.mathworks.com/help/reinforcement-learning/ug/train-q-learning-agent-to-solve-basic-grid-world.html

Reinforcement Learning with MATLAB | 62

Value Functions and Grid World Continued

It might seem easy to determine exactly which route to take to get to
the reward.

However, you have to keep in mind that in model-free RL, the agent
knows nothing about the environment. It doesn’t know that it’s trying
to get to the +10. It just knows that it can take one of four actions, and
it receives its location and reward back from the environment after it
takes an action.

Reinforcement Learning with MATLAB | 63

Solving Grid World with Q-Tables

The way the agent builds up knowledge of the environment is by taking
actions and learning the values of that state/action pair based on the
received reward. Since there are a finite number of states and actions
in grid world, you can use a Q-table to map them to values.

So how does the agent learn these values? Through a process
called Q-learning.

With Q-learning, you can start by initializing the table to zeros,
so all actions look the same to the agent. After the agent takes a
random action, it gets to a new state and collects the reward from the
environment.

The agent uses that reward as new information to update the value
of the previous state and the action that it just took using the famous
Bellman equation.

Reinforcement Learning with MATLAB | 64

The Bellman Equation

The Bellman equation allows the agent to solve the Q-table over time by breaking up the whole problem into multiple simpler steps. Rather than
solving the true value of a state/action pair in one step, the agent will update the value each time a state/action pair is visited through dynamic
programming. The Bellman equation is important for Q-learning as well as other learning algorithms, such as DQN. Here’s a closer look at the
specifics of each term in the equation.

After the agent has taken an action a from state s, it receives a reward.

Value is more than the instant reward from an action; it’s the maximum
expected return into the future. Therefore, the value of the state/action pair
is the reward that the agent just received, plus how much reward the agent
expects to collect going forward.

You discount the future rewards by gamma so that the agent doesn’t
rely too much on rewards far in the future. Gamma is a number between
0 (looks at no future rewards to assess value) and 1 (looks at rewards
infinitely far into the future).

Reinforcement Learning with MATLAB | 65

The Bellman Equation Continued

The Bellman equation is another connection between reinforcement learning and traditional control theory. If you are familiar with optimal control
theory, you may notice that this equation is the discrete version of the Hamilton-Jacobi-Bellman equation, which, when solved over the entire state
space, is a necessary and sufficient condition for an optimum.

The sum is now the new value of the state and action pair (s, a), and we
compare it with the previous estimate to get the error.

The error is multiplied by a learning rate that gives you control over
whether to replace the old value estimate with the new (alpha = 1), or
nudge the old value in the direction of the new (alpha < 1).

Finally, the resulting delta value is added to the old estimate and the
Q-table has been updated.

Reinforcement Learning with MATLAB | 66

The Bellman Equation Continued

It might be helpful to see the Bellman equation in action by looking at the first few steps in a
simple Grid World example. In this example, alpha is set to 1 and gamma is set to 0.9. If both
actions have the same value, then the agent takes a random action; otherwise, the agent
chooses the action with the highest value.

When the agent reaches the termination state, S3, the episode ends and the agent reinitializes at the starting state, S1.
The Q-table values persist and the learning continues into the next episode, which is continued on the next page.

S1 S2 S3
Left 0 0 0
Right 0 0 0

Episode Step State current Q(s, a) Action R(s, a) new Q(s, a)

S1 S2 S3
Left 0 0 0
Right -1 0 0

1 1 S1 right
(random)

-1

S1 S2 S3
Left 0 0 0
Right 0 0 0

S1 S2 S3
Left 0 0 0
Right -1 10 0

1 2 S2 right
(random)

+10

End of episode

Reinforcement Learning with MATLAB | 67

S1 S2 S3
Left -1 0 0
Right -1 10 0

The Bellman Equation Continued

Within just four actions, the agent has already settled on a Q-table that produces the optimal policy; in state S1, it will take a right since the value
8 is higher than -1, and in state S2, it will take a right again since the value 10 is higher than 0. What’s interesting about this result is that the
Q-table hasn’t settled on the true values of each state/action pair. If it keeps learning, the values will continue to move in the direction of the actual
values. However, you don’t need to find the true values in order to produce the optimal policy; you just need the value of the optimal action to be
the highest number.

S1 S2 S3
Left 0 0 0
Right -1 10 0

Episode Step State current Q(s, a) Action R(s, a) new Q(s, a)

2 1 S1 left
(greedy)

-1

S1 S2 S3
Left -1 0 0
Right -1 10 0

S1 S2 S3
Left -1 0 0
Right 8 10 0

2 2 S1 right
(random)

-1

End of episode

Reinforcement Learning with MATLAB | 68

The Critic as a Neural Network

Extend this idea to an inverted pendulum. Like Grid World, there are
two states, angle and angular rate, except now the states
are continuous.

The value function (the critic) is represented with a neural network. The
idea is the same as with a table: You input the state observations and
an action, the neural network returns the value of that state/action pair,
and the policy is to choose the action with the highest value.

Over time, the network would slowly converge on a function that
outputs the true value for every action anywhere in the continuous
state space.

Reinforcement Learning with MATLAB | 69

The Downside of Value-Based Policies

You can use a neural network to define the value function for
continuous state spaces. If the inverted pendulum has a discrete
action space, you can feed discrete actions into your critic network one
at a time.

Value function–based policies won’t work well for continuous action
spaces. This is because there is no way to calculate the value one
at a time for every infinite action to find the maximum value. Even for
a large (but not infinite) action space, this becomes computationally
expensive. This is unfortunate because often in control problems you
have a continuous action space, such as applying a continuous range
of torques to an inverted pendulum problem.

So what can you do?

You can implement a vanilla policy gradient method, as covered in
the policy function–based algorithm section. These algorithms can
handle continuous action spaces, but they have trouble converging
when there is high variance in the rewards and the gradient is noisy.
Alternatively, you can merge the two learning techniques into a class of
algorithms called actor-critic.

 » See how to train an actor-critic agent to balance
an inverted pendulum in MATLAB

https://www.mathworks.com/help/reinforcement-learning/ug/train-ac-agent-to-balance-cart-pole-system.html
https://www.mathworks.com/help/reinforcement-learning/ug/train-ac-agent-to-balance-cart-pole-system.html

Reinforcement Learning with MATLAB | 70

Actor-Critic Methods

The actor is a network that is trying to take what it thinks is the best action given the current state, as seen with the policy function method.
The critic is a second network that is trying to estimate the value of the state and the action that the actor took, as seen with the value function
method. This approach works for continuous action spaces because the critic only needs to look at the single action that the actor took and does
not need to try to find the best action by evaluating all of them.

Reinforcement Learning with MATLAB | 71

The Actor-Critic Learning Cycle

The actor chooses an action in the same way
that a policy function algorithm would, and it is
applied to the environment.

The critic makes a prediction of what the value of that
action is for the current state and action pair.

Reinforcement Learning with MATLAB | 72

The Actor-Critic Learning Cycle Continued

The critic then uses the reward from the environment to determine the accuracy of its value prediction. The error is the difference between the
new estimated value of the previous state and the old value of the previous state from the critic network. The new estimated value is based on
the received reward and the discounted value of the current state. The error gives the critic a sense of whether things went better or worse than it
expected.

Reinforcement Learning with MATLAB | 73

The Actor-Critic Learning Cycle Continued

The critic uses this error to update itself in the same
way that a value function would so that it has a better
prediction the next time it’s in this state.

The actor also updates itself with the response from
the critic so that it can adjust its probabilities of taking
that action again in the future.

In this way, the policy now ascends the reward slope
in the direction that the critic recommends rather
than using the rewards directly.

Reinforcement Learning with MATLAB | 74

Two Complementing Networks

A lot of different types of learning algorithms use an actor-critic policy;
this ebook generalizes these concepts to remain algorithm agnostic.

The actor and critic are neural networks that try to learn the optimal
behavior. The actor is learning the correct actions to take using
feedback from the critic to know which actions are good and bad, and
the critic is learning the value function from the received rewards so
that it can properly criticize the action that the actor takes.

With actor-critic methods, the agent can take advantage of the best
parts of policy and value function algorithms. Actor-critics can handle
both continuous state and action spaces, and speed up learning when
the returned reward has high variance.

Hopefully, it’s now clear why you may have to set up two neural
networks when creating your agent; each one plays a very
specific role.

Reinforcement Learning with MATLAB | 75

Policy Deployment

The last step in the reinforcement learning workflow is to deploy the policy.

If learning is done with the physical agent in the real environment, then the learned policy is already on the agent and can be exploited. This
ebook has assumed that the agent has learned offline by interacting with a simulated environment. Once the policy is sufficiently optimal, the
learning process can be stopped and the static policy deployed onto any number of targets, just like you would deploy any traditionally developed
control law.

Reinforcement Learning with MATLAB | 76

Deploying the Learning Algorithm

Even if the majority of learning is done offline with a simulated
environment, it may be necessary to continue learning with the real
physical hardware after deployment.

This is because some environments might be hard to model accurately,
so a policy that is optimal for the model might not be optimal for the
real environment. Another reason might be that the environment slowly

changes over time and the agent must continue to learn occasionally
so that it can adjust to those changes.

For these reasons, you deploy both the static policy and the learning
algorithms to the target. With this setup, you have the option of
executing the static policy (turn learning off) or continuing to update the
policy (turn learning on).

Reinforcement Learning with MATLAB | 77

The Complementary Relationship

There is a complementary relationship between learning with a simulated environment and learning with the real environment. With the
simulation, you can safely and relatively quickly learn a sufficiently optimal policy—one that will keep the hardware safe and get close to the
desired behavior even if it’s not perfect. Then you can tweak the policy using the physical hardware and online learning to create something that
is fine-tuned to the environment.

Reinforcement Learning with MATLAB | 78

The Drawbacks of RL

At this point, you may think that you can set up an environment, place
an RL agent in it, and then let the computer solve your problem while
you go off and get a coffee. Unfortunately, even if you set up a perfect
agent and a perfect environment and the learning algorithm converges
on a solution, there are still drawbacks to this method.

These challenges come down to two main questions:
• How do you know the solution is going to work?
• Is there a way to manually adjust it if it’s not quite perfect?

Reinforcement Learning with MATLAB | 79

The Unexplainable Neural Network

Mathematically, a policy is made up of a neural network with possibly
hundreds of thousands of weights and biases and nonlinear activation
functions. The combination of these values and the structure of the
network create a complex function that maps high-level observations to
low-level actions.

This function is a black box to the designer. You may have an intuitive
sense of how this function operates and the hidden features that
this network has identified, but you don’t know the reason behind
the value of any given weight or bias. So if the policy doesn’t meet a
specification or if the operating environment changes, you won’t know
how to adjust the policy to address that problem.

There is active research that is trying to push the concept of explainable artificial intelligence. This is the idea that you can set up your network so
that it can be easily understood and audited by humans. At the moment, the majority of RL-generated policies are still categorized as a black box,
which is an issue that needs to be addressed.

Reinforcement Learning with MATLAB | 80

Pinpointing Problems

There is an issue where the very thing that has made solving the control problem easier—condensing the difficult logic down to a single black-
box function—has made our final solution incomprehensible. Contrast this with a traditionally designed control system, where there is typically a
hierarchy with loops and cascaded controllers, each designed to control a very specific dynamic quality of the system. Think about how gains are
derived from physical properties like appendage lengths or motor constants, and how simple it is to change those gains if the physical system
changes.

In addition, if the system doesn’t behave the way you expect, with
a traditional design you can often pinpoint the problem to a specific
controller or loop and focus your analysis there. You can isolate a
controller and test and modify it to ensure it’s performing under the
specified conditions, and then bring it back into the larger system.

Isolating issues is difficult to do when the solution is a monolithic collection of
neurons and weights and biases. So, if you end up with a policy that isn’t quite
right, rather than being able to fix the offending part of the policy, we have to
redesign the agent or the environment model and then train it again. This cycle of
redesigning, training, and testing can be time consuming.

Reinforcement Learning with MATLAB | 81

The Larger Problem

There is a larger issue looming here that goes beyond the length of time it takes to train an agent, and it comes down to the accuracy of the
environment model.

It is difficult to develop a sufficiently realistic model that takes into account all of the important system dynamics as well as disturbances and
noise. At some point, it’s not going to perfectly reflect reality, and so any control system you develop with that model is also not going to be
perfect. This is why you still have to do physical tests rather than just verify everything with a model.

This is less of an issue if you use the model to design a traditional control system, since you can understand the functions and can tune the
controllers. However, with a neural network policy, you don’t have that luxury. As you can never build an absolutely realistic model, any agent
you train with that model will be slightly wrong. The only option to fix it is to finish training the agent on the physical hardware, which can be
challenging in its own right.

Reinforcement Learning with MATLAB | 82

Verifying the Learned Policy

Verifying that a policy meets the specifications is also difficult with
a neural network. For one reason, with a learned policy, it’s hard to
predict how the system will behave in one state based on its behavior
in another. As an example, if you train an agent to control the speed of
an electric motor by having it learn to follow a step input from 0 to 100
RPM, you can’t be certain, without testing, that that same policy will
follow a similar step input from 0 to 150 RPM. This is true even if the
motor behaves linearly.

A slight change may cause a completely different set of neurons to
activate and produce an undesired result. You won’t know that unless
you test it. Testing more conditions does reduce risk, but it doesn’t
guarantee a policy is 100% correct unless you can test every input
combination.

Having to run a few extra tests might not seem like a big deal, but you
have to remember that one of the benefits of deep neural networks is
that they can handle data from rich sensors, like images from a camera
that have extremely large input spaces; think thousands of pixels that
each can have a value between 0 and 255. Testing every combination
in this scenario would be impossible.

Reinforcement Learning with MATLAB | 83

Formal Verification Methods

Learned neural networks also make formal verification difficult. These methods involve guaranteeing that some condition will be met by providing
a formal proof rather than using a test. For example, you don’t have to test to make sure a signal will always be nonnegative if the absolute value
operation of that signal is performed in the software. You can verify it simply by inspecting the code and showing that the condition will always be
met. Other types of formal verification include calculating robustness and stability factors like gain and phase margins.

For neural networks, this type of formal verification is more difficult. As we’ve
discussed, it’s hard to inspect the code and make any guarantees about how
it will behave. You also don’t have methods to determine its robustness or its
stability. It all comes back to the fact that you can’t explain what the function is
doing internally.

Reinforcement Learning with MATLAB | 84

Shrinking the Problem

A good way to reduce the scale of these problems is to narrow the
scope of the RL agent. Rather than learn a policy that takes in the
highest-level observations and commands the lowest-level actions, we
can wrap traditional controllers around an RL agent so it only solves a
very specialized problem. By targeting a smaller problem with an RL
agent, we shrink the unexplainable black box to just the parts of the
system that are too difficult to solve with traditional methods.

A smaller policy is more focused so it’s easier to understand what it’s
doing, its impact on the whole system is limited, and the training time
is reduced. However, shrinking the policy doesn’t solve your problem;
it just decreases its complexity. You still don’t know if it is robust to
uncertainties, if there are stability guarantees, or if can you verify that
the system will meet the specifications.

Reinforcement Learning with MATLAB | 85

Working Around These Issues

Even though you can’t quantify robustness, stability, and safety, you can address those issues with workarounds in the design.

For robustness and stability, you can train the agent in an environment
where the important environment parameters are adjusted each time
the simulation is run.

For example, if you choose a different max torque value for the walking
robot at the start of each episode, the policy will eventually converge to
something that is robust to manufacturing tolerances. Tweaking all of
the important parameters like this will help you end up with an overall
robust design. You may not be able to claim a specific gain or phase
margin, but you will have more confidence that the result can handle a
wider range within the operational state space.

You can also increase safety by determining situations that you want
the system to avoid no matter what, and build software outside of the
policy that monitors for that situation. If that monitor is triggered, you
can constrain the system or take over and place it into some kind of
safe mode before it has a chance to cause damage.

This doesn’t prevent you from deploying a dangerous policy, but it will
protect the system, allowing you to learn how it fails and adjusting the
reward and training environment to address that failure.

Reinforcement Learning with MATLAB | 86

Solving a Different Problem

Workarounds are nice, but you can fix the issues directly by solving a different problem altogether. You can use reinforcement learning as a tool
to optimize the controller gains in a traditionally architected control system. Imagine designing an architecture with dozens of nested loops and
controllers, each with several gains. You can end up with a situation where you have a hundred or more individual gain values to tune. Rather
than try to manually tune each of these gains by hand, you could set up an RL agent to learn the best values for all of them at once.

Reinforcement Learning with MATLAB | 87

RL Complementing Traditional Methods

Imagine an environment comprising a control system and the plant.
The reward would be how well the system performs and how much
effort it takes to get that performance, and the actions would be the
gains for the system. After each episode, the learning algorithm would
tweak the neural network in a way that the gains move in the direction
that increases reward (i.e., it improves performance and lowers effort).

You get the best of both worlds with this method. You don’t have to
deploy any neural networks, verify them, or worry about having to
change them; you just need to code the final static gain values into the
controller. This way, you still have a traditionally architected system,
one that can be verified and manually adjusted on the hardware, but
you populated it with gain values that were optimally selected using
reinforcement learning.

Reinforcement Learning with MATLAB | 88

The Future of Reinforcement Learning

Reinforcement learning is a powerful tool for solving hard problems.
There are some challenges regarding understanding the solution and
verifying that it will work, but as we covered, you have a few ways right
now to work around those challenges. While reinforcement learning is
nowhere near its full potential, it may not be too long before it becomes
the design method of choice for all complex control systems.

Learning algorithms, reinforcement learning design tools such as
MATLAB and Reinforcement Learning Toolbox™, and verification
methods are advancing all the time.

Reinforcement Learning with MATLAB | 89

Reinforcement Learning with MATLAB

Reinforcement Learning Toolbox provides functions and blocks for
training policies using reinforcement learning algorithms. You can use
these policies to implement controllers and decision-making algorithms
for complex systems such as robots and autonomous systems.

The toolbox lets you implement policies using deep neural networks,
polynomials, or look-up tables. You can then train policies by enabling
them to interact with environments represented by MATLAB or
Simulink models.

https://www.mathworks.com/products/reinforcement-learning.html

© 2020 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for
a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders. 12/20

Learn More

Train a Reinforcement Learning Agent in Basic Grid World - Documentation

Train an Actor-Critic Agent to Balance Cart-Pole System - Documentation

Train a Biped Robot to Walk Using DDPG Agent - Documentation

Getting Started with Reinforcement Learning - Code Examples

Reinforcement Learning Tech Talks - Video Series

http://www.mathworks.com/trademarks
https://www.mathworks.com/help/reinforcement-learning/ug/train-q-learning-agent-to-solve-basic-grid-world.html
https://www.mathworks.com/help/reinforcement-learning/ug/train-ac-agent-to-balance-cart-pole-system.html
https://www.mathworks.com/help/reinforcement-learning/ug/train-biped-robot-to-walk-using-ddpg-agent.html
https://www.mathworks.com/help/reinforcement-learning/examples.html
https://www.mathworks.com/videos/series/reinforcement-learning.html

