Metabolic Network Reconstruction, Flux Balance Analysis.

An accurate model of a biochemical network contains all the metabolic reactions in an organism and the genes that encode each enzyme. Flux balance analysis (FBA), a computational method pioneered by Bernhard Palsson (http://systemsbiology.ucsd.edu/Researchers/Palsson
), calculates the flow of metabolites through a metabolic network, making it possible to predict the growth rate of an organism or the rate of production of a metabolite.

Differently from the approach adopted in the dynamic analysis of metabolic networks, which requires a detailed knowledge of the kinetic parameters for all the reactions in the network, and the solution of large systems of differential equations, FBA is based on a very simple matrix representation of the reactions using stoichiometric coefficients. For example, consider the 2nd order reaction:

The following are the differential equations:

dx1/dt = -k1*x1*x2 + 0*x2 + k-1*x3 = -k1*x1*x2 + k-1*x3
dx2/dt = 0*x1 -k1*x1*x2 + k-1*x3 = -k1*x1*x2 + k-1*x3
dx3/dt = k1*x1*x2 + 0*x2 - k-1*x3 = k1*x1*x2 - k-1*x3

which we can represent in matrix form as:

Notice the rate matrix K on the RHS of the equation. The rate matrix can be simplified as:

However, the same reaction can also be represented in terms of velocities or fluxes instead of rate constants:

and rewriting in matrix form we obtain:

We recognize here a new matrix representing the linear transformation of the flux vector v (that contains the reaction rates) to a vector of time derivatives of the concentration vector x:

 replacing the traditional representation

S is the stoichiometric matrix of the reaction. This matrix is organized such that every column corresponds to a reaction (r) and every row corresponds to a compound (c). The entries in the matrix are stoichiometric coefficients, which are integers. Every row describes the reactions in which that compound participates and therefore how the reactions are connected by it.

						 r1 r2

For example, the 1st row of S tells us that c1 is consumed by reaction r1 and produced by reaction r2. By the same token, the 1st column of S tells us that c1 and c2 are consumed, while c3 is produced by reaction r1. To better understand the meaning of the S matrix consider the following reaction map representing a small open network of reactions.
[image:]
In this case we have:

 r1 r2 r3 r4 r5 r6

If in a network there are m metabolites and n reactions S has dimensions m x n. The columns of S are the reaction vectors , while the rows are the connectivity vectors .

The equation:

represents the fundamental equation of the dynamic mass balance that characterizes all functional states of this network. Each individual equation in the set:

represents a summation of all fluxes vk that form compound xi and those that degrade it. It is important to understand that while the reaction vectors sk are structural features of the network and are fixed, the fluxes vk are scalar quantities and represent the flux through reaction k. Therefore fluxes are variables, and each flux has a maximal value (usually determined experimentally), vk ≤ vk,max that limits the size of the time derivatives.

Since the derivative vector is in the column space of S, the fact that each element of v has a maximal value produces as a result that only a portion of the column space (which is spanned by the reaction vectors si) is explored.

The null space of S.
Typically, there are more reactions than metabolites in a network, with the dimensions of S such that , and its . This means that in most cases the null space of S is not empty, and . Let's see this for the matrix S considered above:

S = [1 -1 0 0 0 0;
 0 1 -1 -1 0 0;
 0 0 1 0 -1 0;
 0 0 0 1 0 -1]
NS = null(S,’r’)

Thus, a basis for N(S) is:

We recall here that N(S) is the space of all the flux vectors v whose elements have values such that:

Thus, for example:

Since with any combination of flux vectors v from the null space, these vectors represent flux combinations associated with a steady state in the network. While there is an infinite number of combinations w1vN1 + w2vN2 of the basis vectors of N(S) that will produce a steady state, it is worth looking at those combinations with only vN1 or vN2:

vN1 has unit values for v1, v2, v3, v5.
vN2 has unit values for v1, v2, v4, v6.

Thus, the flux vectors that are the basis for the null space identify two extreme pathways (EP) capable of sustaining a steady state in this simple metabolic network.

For more complex networks identification of the EPs may not be so easy because of the following reasons:

1. The null space is orthogonal to the row space of S. Therefore, all the vN must be orthogonal to all the rows of S simultaneously: because of this constraint an orthogonal basis (all dot products between basis vectors = 0) for the null space is likely to contain some negative elements.

NS = null(S)
NS’*NS

2. A biochemically meaningful basis for the null space cannot contain vectors with some negative elements, because fluxes through elementary reactions can only be ≥ 0. For example, the flux vector:

vN3 = vN2 - vN1 = [0 0 -1 1 -1 1]T

would also produce a steady state, but it would require the inversion of flux through two irreversible reactions (r3, r5).

3. Since we are looking for a null space basis with only positive or 0 elements, in most cases the EPs will not be orthogonal, but convex: for example, the null space basis defined by vN1 and vN2 is convex.

NS = null(S,’r’)
NS’*NS
It is worth spending more time analyzing the concepts of convex vector space and convex basis. We define a vector space as convex if any vector connecting any 2 points of the space is completely contained inside the space (that is, it does not cross any space boundaries). The importance of being in a convex space is exemplified by the simple observation that if we are anywhere in it we can see all its points. In contrast, we may fail to find a minimum or maximum of a function in a non-convex (concave) space, because from our perspective (i.e. point A) we can't see all the points (i.e. point B). Both convex and concave spaces are bound (closed) spaces, as opposed to a general linear space, which is unbound (open), and thus extends indefinitely in all directions. The fundamental property of the basis for a convex space is that any point of the space can be represented as a nonnegative linear combination of the basis vectors (i.e., the blue and red vectors in the figure on the side).

We recall here some important differences between linear and convex spaces. A linear vector space is generally defined by a system of linear equations; consider the system:

syms x1 x2 x3
x = [x1 x2 x3]'
A = [1 3 1;4 2 2];
eqs = A*x
sol = solve(eqs)
sol.x1
sol.x2

The general solution is: x1 = -0.4x3 , x2 = -0.2x3 , x3. We can assign an arbitrary value to x3, which fixes the other 2 variables, and then normalize:

x3 = 2
c = subs(x3)
b = subs(sol.x2)
a = subs(sol.x1)
x = double([a b c]/norm([a b c]))'

The derived unit vector x = [-0.3651 -0.1826 0.9129] is the basis for a vector space (a line, a subspace of R3) that contains all the solutions to the system . In fact, any multiple of this unit vector is still a solution to the equation:

x = ([a b c]/norm([a b c]))'
A*x
A*2*x
A*(0.0031*x)
null(A)

And of course this solution vector is the basis for the null space of A. Likewise the equation:

defines another subspace of R3, a plane going through the origin with basis vectors in the null space of A:

null(A(2,:))

In contrast a convex vector space is usually defined by a system of linear equations with inequalities:

In the context of biochemical reactions, the corresponding dynamic mass balance equation describes all possible states of the metabolic system. Since the elementary reactions have both nonnegative fluxes, vi ≥ 0 and upper bounds, vi ≤ vi,max, the allowable flux vectors are in a rectangular hyperbox in the positive orthant of the flux space, bounded by planes parallel to each axis as defined by vi,max. The hyperbox contains all allowable flux states, both steady-state and dynamic. The flux balance equation is a hyperplane going through the origin, that intersects the hyperbox forming a finite segment of a hyperplane bounded by planes corresponding to vi,max. This intersection is a polytope in which all the steady-state flux distributions between vi ≥ 0 and vi ≤ vi,max, lie. This polytope is spanned by vectors that are edges of the polytope, and thus represent a convex basis

[image:]We can visualize such a space if we limit ourself to analyze a network with only 3 reactions: for example this could be the simple flux split represented by the 3 internal reactions (r2, r3, r4) of the small network considered so far, after we remove the 3 exchange reactions (r1, r5, r6). In this case, the subnetwork stoichiometric matrix contains only 1 compound (x2) and 3 reactions (v2, v3, v4):

S = [1 -1 -1]

and its null space is now a submatrix of the previous null space:

S = sym(S)
NS = null(S)

The two vectors of the null space define a plane going through the origin in a 3-dimensional space containing all the possible values of the flux vector v = [v2 v3 v4]. The plane contains only the value of v that result in a steady state. We can easily find out where this plane is: the equation of a plane is ax+by+cz+d = 0 where a, b, c are the coordinates of the vector normal to the plane and d is a coefficient that determines how far the plane is from the origin of the coordinate system. Since the null space plane goes through the origin, the equation has the form ax+by+cz = 0. The normal vector to this plane is given by the cross product between any two vectors in the plane:

n1 = NS(:,1)
n2 = NS(:,2)
normal = cross(n1, n2)

The normal vector is [1 -1 -1]. Next, we declare x, y, and z to be a vector of symbolic variables, and we multiply it by the normal vector to generate the LHS of the equation ax+by+cz = 0.

syms x y z
P = [x,y,z]
planefunction = P*normal

The equation of our plane is planefunction = x - y - z = 0, and we can solve for z in terms of x and y in this equation:

zplane = solve(planefunction, z)

We obtain: zplane = x - y. We can now represent our plane as a surface. First, we create a fine grid of x and y points within some boundaries, and then for each of these points we calculate the corresponding value of z for our plane:

[X,Y] = meshgrid(0:0.02:7,0:0.02:5);
Z = X-Y;

We ignore the values outside the positive orthant because all fluxes must be nonnegative:

Zneg = Z<0;
Z(Zneg) = NaN;
[nx,ny] = size(X);
C = ones(nx,ny);
figure;surf(X,Y,Z,C,'EdgeColor','none','FaceAlpha',0.2);
xlabel('X = V2');ylabel('Y = V3');zlabel('Z = V4');
box on

We can easily find the point of intersection of the null space plane with the bounding planes of the positive orthant:

hold on
Xmax = 7; Ymax = 5; Zmax = 6
YminZmin = find(Y==0&Z==0)
YmaxZmin = find(Y==Ymax&Z==0)
YmaxXmax = find(Y==Ymax&X==Xmax)
XmaxZmax = find(X==Xmax&Z==Zmax)
YminZmax = find(Y==0&Z==Zmax)

P1 = [X(YminZmin) Y(YminZmin) Z(YminZmin)]
P2 = [X(YmaxZmin) Y(YmaxZmin) Z(YmaxZmin)]
P3 = [X(YmaxXmax) Y(YmaxXmax) Z(YmaxXmax)]
P4 = [X(XmaxZmax) Y(XmaxZmax) Z(XmaxZmax)]
P5 = [X(YminZmax) Y(YminZmax) Z(YminZmax)]

Pmat = [P1;P2;P3;P4;P5]

Which allows us to represent the surface as a more convenient MATLAB 'patch' object:

Pmat = [P1;P2;P3;P4;P5]
PX = Pmat(:,1);PY = Pmat(:,2);PZ = Pmat(:,3);
patch(PX,PY,PZ,'g','FaceAlpha',0.1);

Alternative MATLAB function to draw a 3D-polygon
% fill3(PX,PY,PZ,'g','FaceAlpha',0.1);

We can also represent on top of the surface the two null space basis vectors (in red, scaled by 2, so they can be seen more easily). They are indeed the edges of the polytope:

t = 0:0.01:1;
plot3(2*t,2*t,0*t,'r','LineWidth',3)
plot3(2*t,0*t,2*t,'r','LineWidth',3)

Any point on the surface, representing a possible steady state flux vector, can be represented as a combination of the two basis vectors. For example, the flux vector v = [5 2 3] (shown as a cyan circle on the null space surface) is obtained from the basis vector combination:

 	

v = [5 2 3]'
scatter3(v(1),v(2),v(3),150,'ok','MarkerEdgeColor','blue',...
[image:]'LineWidth',2,'MarkerFaceColor','cyan')
NS\v

In principle, we could represent the same point using a different non-negative basis (shown in green over the null space surface):

NS2 = [2 3;1 2;1 1]
plot3(2*t,1*t,1*t,'g','LineWidth',3)
plot3(3*t,2*t,1*t,'g','LineWidth',3)

However, in this case the combination would require taking some negative multiple of one the basis vectors:

NS2\v

Thus, while there exist an infinite number of non-negative vectors that we could use as the basis for the null space, there exists only a unique choice of basis that can give a non-negative representation of all the points in the non-negative orthant of the null space, and thus qualifies as a convex basis. In general, if the null space is defined by a system of linear equations with inequalities:

the space has the shape of a polytope, and its basis can only have vectors at the edges of the polytope: these vectors are the extreme states or extreme pathways (EP or simply p) capable of sustaining a steady state in the network. Every steady state flux vss is thus a combination of the unique extreme pathways pk vectors, with weights αk that are positive and bounded, that is 0 ≤ αk,min ≤ αk ≤ αk,max.

We can see the effect of introducing upper bounds for the αk by identifying the region of the null space plane that is cut out by three perpendicular planes corresponding to constraints vi ≤ vi,max on fluxes:

v2,max = 6	v3,max = 4 	v4,max = 5

hold on

Plane parallel to xz at given y

pointA = [0,4,0];
pointB = [Xmax,4,0];
pointC = [Xmax,4,Zmax];
pointD = [0,4,Zmax];

point_mat = [pointA;pointB;pointC;pointD]
X = point_mat(:,1);
Y = point_mat(:,2);
Z = point_mat(:,3);
patch(X,Y,Z,'b','FaceAlpha',0.1);

Plane parallel to yz at given x

pointA = [6,0,0]; pointB = [6,Ymax,0]; pointC = [6,Ymax,Zmax]; pointD = [6,0,Zmax];

point_mat = [pointA;pointB;pointC;pointD]
X = point_mat(:,1);
Y = point_mat(:,2);
Z = point_mat(:,3);
patch(X,Y,Z,'b','FaceAlpha',0.1);

Plane parallel to xy at given z

pointA = [0,0,5]; pointB = [0,Ymax,5]; pointC = [Xmax,Ymax,5]; pointD = [Xmax,0,5];

point_mat = ...
[pointA;pointB;pointC;pointD]
X = point_mat(:,1);
Y = point_mat(:,2);
Z = point_mat(:,3);
patch(X,Y,Z,'b','FaceAlpha',0.1);

[image:]We can see how the upper limits on the three reaction velocities further decreases the allowed region of the null space. For only 3 variables the null space has only 2 dimensions and the cut out region (shown as a light brown area in perspective and in the xy, xz, and yz projections) has the shape of a flat polygon: to identify the polygon we use the same code that we used to define the original box boundaries for the null space plane, but now we adopt the boundaries set by the perpendicular planes:

[X,Y] = meshgrid(0:0.02:6,0:0.02:4);
Z = X-Y;
Zneg = Z<0 | Z>5;
Z(Zneg) = NaN;
[nx,ny] = size(X);

YminZmin = find(Y==0&Z==0)
YmaxZmin = find(Y==4&Z==0)
YmaxXmax = find(Y==4&X==6)
XmaxZmax = find(X==6&Z==5)
YminZmax = find(Y==0&Z==5)

P1 = [X(YminZmin) Y(YminZmin) Z(YminZmin)]
P2 = [X(YmaxZmin) Y(YmaxZmin) Z(YmaxZmin)]
P3 = [X(YmaxXmax) Y(YmaxXmax) Z(YmaxXmax)]
P4 = [X(XmaxZmax) Y(XmaxZmax) Z(XmaxZmax)]
P5 = [X(YminZmax) Y(YminZmax) Z(YminZmax)]

Pmat = [P1;P2;P3;P4;P5]
PX = Pmat(:,1);PY = Pmat(:,2);PZ = Pmat(:,3);
patch(PX,PY,PZ,'r','FaceAlpha',0.1);
% fill3(PX,PY,PZ,'r','FaceAlpha',0.1);

For >3 variable, the null space has ≥ 3 dimensions, and the cut polygon becomes a cut polytope.

This small example with only 3 reactions allows us to understand the goal and functioning of flux balance analysis. FBA seeks to maximize or minimize an objective function Z:

subject to:

 can be any linear combination of fluxes, where c is a vector of weights indicating how much each reaction (such as the biomass reaction when simulating maximum growth) contributes to the objective function.

In practice, when only one reaction is desired for maximization or minimization, c is a vector of 0’s with a value of 1 at the position of the reaction of interest.

Optimization of such a system is accomplished by linear programming. FBA can thus be defined as the use of linear programming to solve the equation , given a set of upper and lower bounds on v and a linear combination of fluxes as an objective function. The output of FBA is a particular flux distribution, vopt, that maximizes or minimizes the objective function.

We can see how this is accomplished with our small network of only 3 reactions. We start by setting up the constraints:

S = [1 -1 -1];
der = 0;
lb = zeros(3,1); % Lower bound
ub = [6 4 5]; % Upper bound
v0 = [4 4 0]; % Initial solution guess

Here we set up the objective function: since we are maximizing instead of minimizing we place a negative sign in front of the function

c = -[1 2 1]';

Next, we call a linear programming routine using the simplex method:
options = optimoptions(@linprog,'Algorithm','dual-simplex')
[v,fval,exitflag,output,lambda] = linprog(c,[],[],S,der,lb,ub,v0,options);
v

or using the interior point method (IPM):
options = optimoptions(@linprog,'Algorithm','interior-point')
[v,fval,exitflag,output,lambda] = linprog(c,[],[],S,der,lb,ub,v0,options);
v

The solution for the flux vector that maximizes the objective function is:

Here we run again with a different objective function

c = -[1 2 3]';
options = optimoptions(@linprog,'Algorithm','simplex')
[v,fval,exitflag,output,lambda] = linprog(c,[],[],S,der,lb,ub,v0,options);
v

[image:]As expected from our understanding of linear programming each solution corresponds to one of the corners of the polygon representing the allowed space of all solutions.

It is worth looking at the meaning of the shadow price and the reduced cost vector in this context. We recall here that in linear programming when the optimal solution is found (optimality condition) the shadow prices (or dual variables) of the constraint are the partial derivatives of the objective function with respect to the RHS b of this constraint, or in other words, the sensitivity of the solution to a change in the constraint. We have seen how this derivative is the Lagrange multiplier itself:

lambda.eqlin

We recall here that in MATLABIn linprog is the negative of the actual slope .

Thus, in our specific example , corresponding to a shadow price = 2, indicates that any unit increase in b = d[x]/dt (the time derivative of the compounds concentrations) from the steady state (b = d[x]/dt = 0) will increase by 2 the objective function cTv = -[1 2 3]v.

The reduced cost s vector is the derivative of the objective function Z with respect to each of the design variables at the solution. In our case:

where y is the Lagrange multiplier in the Lagrangian of the objective function. Again, since in linprog is the negative of the actual slope , we take the negative of to calculate the reduced costs:

s = c-S'*-lambda.eqlin

This result indicates that an increase in fluxes v2 and v4 (if allowed by the constraints) would tend to decrease the objective function cTv = -[1 2 3]v.

Notice that the reduced costs are the Lagrange multipliers on the lower (nonnegativity) and upper bounds at the solution. We recall here that, due to its sign conventions, in MATLAB linprog we have the following:

lower bounds = reduced costs due to non-negativity constraints or lower bounds
upper bounds = -reduced costs due to upper bounds

lambda.eqlin
lambda.upper
[image:]lambda.lower
s = c-A'*-lambda.eqlin

Now that we understand the application of Linear Programming (LP) to the simpler network of the flux split we can go back and carry out an LP analysis of the larger network (shown on the side) that includes also the exchange fluxes. In this network S is:

 r1 r2 r3 r4 r5 r6

S = [1 -1 0 0 0 0;
 0 1 -1 -1 0 0;
 0 0 1 0 -1 0;
 0 0 0 1 0 -1]
NS = null(S,’r’)

If we wanted to divert all the flux along the path v1, v2, v3, v5, corresponding to the 1st column of the null space [1 1 1 0 1 0]T we could set up linprog as follows:

dxdt = zeros(4,1);
lb = [0 0 0 0 0 0]'; % Lower bound
ub = [3 3 3 3 3 3]'; % Upper bound
c = -[1 1 1 0 1 0]';

options = optimoptions(@linprog,'Algorithm',’dual-simplex')
 [v_opt,fval_opt,exitflag,output,lambda] = linprog(c,[],[],S,dxdt,lb,ub,[],options);
v_opt
fval_opt
lambda_equal = lambda.eqlin
lambda_upper = lambda.upper
lambda_lower = lambda.lower
shadow_prices = -lambda.eqlin
reduced_costs = c-S'*-lambda.eqlin
reduced_costs = lambda_lower - lambda_upper

We recall here that both shadow prices and reduced costs represent the shadow price = cost/unit of the constraint to which they refer:

In the particular case of a biochemical network we have:

In the example of the flux split we obtain:

 ,

 , , , ,

m Shadow prices: cost/unit of constraints on dx/dt (nodes in the reaction map)
n Reduced costs: cost/unit of constraints on v (links in the reaction map)

[image:]
A change from the steady state dx/dt = 0, in which the concentration of each metabolite is constant over time, would mean that the concentration of a given compound increases or decreases over time. For example, a steady increase in the concentration of x1 can happen if there is a relative increase of v1 versus v2.

Thus, if a given metabolite x inside the cell is exchanged with the outside, shadow prices can be viewed as representing the effect of changes in the exchange fluxes for that metabolite.

A calculated positive shadow price for x1 also indicates that if the concentrations of x1 increases over time instead of remaining constant, this state is associated with a more positive cost function Z than the steady state, as it corresponds to a decrease in one or more of the v2, v3, v5 fluxes with respect to v1.

More generally, shadow prices reflect the intrinsic relevance of a given metabolite toward the achievement of the goal stated in the objective function.

If a reduced cost is zero, it means there is no way of improving (in our case 'further minimizing') the objective function cTv by changing the flux level through the corresponding reactions. Conversely a negative element in the reduced costs vector indicate that an increase (if allowed by the constraints) in the corresponding flux would further minimize the objective function cTv. By the same token, positive element in the reduced costs vector would indicate that an increase (if allowed by the constraints) in the corresponding flux would make more positive the objective function cTv. For example, notice how increasing the lower bound on v6 allowing this flux to become positive would increase the value of the objective function:

dxdt = [0 0 0 0]'; c = -[1 1 1 0 1 0]'; lb = [0 0 0 0 0 0.1]'; ub = [3 3 3 3 3 3]';
options = optimoptions(@linprog,'Algorithm',’dual-simplex');
[v_opt,fval_opt] = linprog(c,[],[],S,dxdt,lb,ub,[],options);
v_opt, fval_opt
 ,

More generally, reduced costs reflect the intrinsic relevance of a given flux toward the achievement of the goal stated in the objective function.

If a biochemical network is open with exchange reactions (r1, r5, r6) leadind to the entry or exit of metabolites in the system, it is often customary to place these reactions together as the rightmost columns of the stoichiometric matrix:

 s1 s2 s3 s4 s5 s6

 r2 r3 r4 r1 r5 r6
	 internal	 exchange

If exchange reactions are viewed as part of an even larger closed system, then the stoichiometric matrix includes both the internal and external compounds. This leads to the appearance in the matrix of two new blocks, with the block on the lower left containing only 0s.

[image:] s1 s2 s3 s4 s5 s6

 r2 r3 r4 r1 r5 r6
	 internal	 exchange
The left null space of S.

We have seen how the null space N of S, N(S), contains all the flux vectors v that can sustain a steady state. The left null space L of S, L(S) or N(ST), is defined by the matrix equation:

LTS = 0

which means that the colums of L (or equivalently the rows of LT) are a set of i = m - r linearly independent vectors orthogonal to all the reaction vectors sj comprising S, and L is m x (m-r).

For example, consider the 2nd order reaction:
x1 + x2 x3		with 		
S = [-1 -1 1]'
L = null(S',’r’)
L’*S

We can multiply both sides of LTS = 0 by v obtaining:

which represents a conservation relationship in the form of a summation of concentrations , called a pool, that is time invariant.

Integrating both sides we obtain the mass conservation equation:

where a, (m-r) x 1, is a vector of constants that sets the sizes of the pools (the sum of the concentrations of all the metabolites in the pool).

Since the concentrations xi are nonnegative quantities, it is convenient to identify a non-negative basis for the left null space. For the 2nd order reaction:		

x1 + x2 x3

summing the two columns of L we obtain a nonnegative basis for L:

Since , it means we have two metabolic pools:

x2 + x3 (1st row)
x1 + x3 (2nd row)

whose concentrations do not change during the reaction. For any given size a of the two pools we can calculate the concentration vector x from the matrix equation . For example, if we set a = [2 1]T we have:

Of course, since the rank of LT is 2 the system of equation is underdetermined and the solution is not unique. However, we can find the 'shortest' solution (the projection x+ in the row space of LT not containing any contribution from the null space of LT) using the pseudoinverse of LT (see SVD, CHAPTER 11).

x_short = pinv(L’)*a		

with xshort being one possible extreme of the concentration vector. We notice here that starting from xshort we could carry out the reaction according to the stoichiometry in S, which would lead to:

However, the resulting vector of concentrations is outside the allowed positive range. This means that xshort must be considered the result of a reaction, rather than the starting point. Therefore, we can carry out the reaction in the opposite direction:

with the result corresponding to the other possible extreme of the concentration vector x, or xlong, given . We can see now how starting from xlong at the steady state, as the reaction progresses an amount equal to some fraction of S is progressively added to this concentration vector, to finally obtain xshort.

There is additional chemical meaning in the left null space of S. Consider the reaction:

H-Cl + Na-OH H-OH + Na-Cl		with stoichiometric matrix		
and left null space L:

 such that

S = [-1 -1 1 1]'
L = null(S',’r’)
rank(L)
L’*S

We can also write an elemental matrix E for this reaction such that:

E = [1 0 0 1;1 1 2 0;0 1 1 0;0 1 0 1]
rank(E)
E*S

Only 3 rows of which are linearly independent (rank(E) = 3) and we find that:

Thus, the rows of the elemental matrix E represent an alternative nonnegative convex basis for L. We can understand this result if we think that a chemical reaction cannot create or destroy elements. Thus, the inner product of the rows, ei, in the elemental matrix and the reaction vectors, sj, must be zero for all the elements found in the compounds that participate in the reaction. This inner product simply adds up an element on each side of the reaction. Since the stoichiometric coefficients are negative for the reactants (the compounds that disappear in the reaction) and positive for the products (the compounds that appear in the reaction), this sum is zero. The same is true of compound charge, since it is balanced during a chemical reaction.

For example, consider the coupled reactions:

H-Cl + Na-OH H-OH + Na-Cl	
Na-Cl Na+ + Cl-	
H-OH H+ + OH-
with stoichiometric matrix:		 	
and elemental matrix:

S = [-1 -1 1 1 0 0 0 0;0 0 0 -1 1 1 0 0;0 0 -1 0 0 0 1 1]'
E = [1 0 0 1 0 1 0 0;0 1 2 0 0 0 1 1;0 1 1 0 0 0 0 1;0 1 0 1 1 0 0 0;0 0 0 0 1 -1 1 -1]
rank(E), E*S

Also in this case, the unique rows of the elemental/charge matrix E span the left null space L of S:

But we can also calculate a non-negative basis for L directly from S, from which we derive information on the metabolic pools (the 1’s in the rows of LT):

HCL
NaOH
HOH
NaCL
Na+
Cl-
H+
OH-

L = null(S','r')
L(:,1) = L(:,1)+L(:,2) , rank(L), L'*S

Time invariant metabolic pools (species with 1’s in the rows of LT):
NaOH + NaCl + Na+
HCl + NaCl + Na+
HCl + NaCl + Cl-
HCl + HOH + H+
HCl + HOH + OH-

The Singular Value Decomposition (SVD) of S.
We have described in some detail two of the fundamental spaces of the stoichiometric matrix S: these spaces can be derived from the Singular Value Decompositon (SVD) of S. We recall here that for a matrix S of dimensions m x n and rank r, there exist orthonormal matrices U (of dimension m x m) and V (of dimension n x n) and a matrix with diagonal elements = diag(σ1, σ2, . . . , σr) with σ1 ≥ σ2 ≥ . . . ≥ σr > 0 such that:

[image:]We have seen how the matrix of left singular vectors provides orthonormal bases for the column () and left null () spaces. Likewise, the matrix of right singular vectors provides orthonormal bases for the row () and null () spaces. Thus, the columns of U and V are the normal modes of S, and the values in are the weights with which the modes contribute to the reconstruction of the matrix S.

The linear transformation operated by the stoichiometric matrix S onto the flux vector v:

can be rationalized as the consecutive action of three operators, , , :

 is the orthonormalization of the flux space (), represents mapping onto an orthonormal basis for the concentration space () and scaling by the singular values, then converts the orthonormal concentrations back to the original coordinate system.

The basic dynamic mass balance equation:

can be written as:

from which we derive:

Notice that this is the same as inverting the direction of the last (upward) arrow in the SVD scheme above. The relationship between the groups of fluxes and concentrations that correspond to the nonzero singular values can be written as:

which shows that there is a linear combination of compounds:

which is uniquely moved by a linear combination of metabolic fluxes:

and the extent of this motion is given by . The singular vectors are orthonormal to each other, and consequently each of the k motions are decoupled.

The relationship between the groups of fluxes and concentrations:

defines a set of systemic metabolic reactions or eigen-reactions in which the elements of uk are systemic stoichiometric coefficients, and a set of systemic connectivities or eigen-connectivities in which the elements of vk are systemic participation numbers. The uk vectors can be considered as systemic reaction vectors analogous to the si reaction vectors of S. Thus, as we move along this vector, compounds with negative uki values decrease, while those with positive uki increase, and vice versa. Similarly, as we move along , the reactions with positive values increase the chemical transformations represented in uk, while those with negative values act in the opposite direction. In this respect, the interpretation of the SVD of the stoichiometric matrix is analogous to the interpretation of the SVD of microarray data.

[image:]

[image:]While the SVD of the stoichiometric matrix S is 'mathematically' correct, the derived basis vectors for the different spaces are not necessarily the most convenient ones to understand the properties of a metabolic network. For example, we have seen how upper and lower bounds on the steady state fluxes limit the region of the null space of S that is biochemically feasible (i.e., no negative fluxes) to a convex space whose unique basis is represented by the extreme pathways (EP) pi. Every steady state flux vss is thus a combination of the pi vectors, with weights αi that are positive and bounded: 0 ≤ αi,min ≤ αi ≤ αi,max.

When represented on a reaction map, EP's can be recognized as true metabolic pathways (which can be different from the traditional ones of biochemistry books like glycolysis or penthose phosphate shunt) whose combinations can sustain a wide range of steady states. However, one problem with EP's is that their number can be much larger than the dimensions of the parent vector space, N(S). To understand this concept, consider a subspace of the standard 3-dimensional space in the form of a convex polytope: this convex subspace has 5 edges, which represent its convex basis, while the dimensions of the parent space are only 3. Furthermore, while there is only a unique combination of the basis vectors of the parent space that represents a given point inside the polytope (the blue dot), there usually are multiple equivalent combinations of the convex basis vectors that can represent the same point.

For large metabolic networks the number of extreme pathways pi can exceed the dimensions of the null space (which are n-r), and the biochemical interpretation of the combinations of pi that sustain a steady state can be difficult. Sometimes, by mere intuition and biochemical knowledge, it is possible to find a minimum set of basis vectors for N that represent meaningful biochemical pathways.

Fortunately, a minimal basis, essential identical to the one derived by intuition, with the same number of dimensions as N, can be computed using an algorithm that chooses a matrix P, where pi are the columns, with as few non-zero elements as possible. Choosing such a basis comes down to solving a mixed-integer linear problem (MILP) problem; this type of problems is conceptually similar to the class of problems solved with linear programming (LP). Like in linear programming we have:

· A linear objective function, cTx, where c is a column vector of constants, and x is a column vector of unknowns.
· Lower (lb) and upper (ub) bounds on x and linear constraints, Ax = b and/or Aineqx ≤ bineq
· In addition, we have restrictions on some or all components of x to have integer values.

[image:]In mathematical terms, given vectors c, lb, ub, matrices A and Aineq and corresponding vectors b and bineq, and a set of indices intcon, defining which component of x must have integer values, a MILP problem is defined as:

Consider the following metabolic network involving 5 species and 14 reactions. Its stoichiometric matrix is m = 5 x n = 14, with rank r = 5:

We know its null space has n-r = 9 dimensions. So, we are looking for a nonnegative basis of N consisting of n-r = 9 flux vectors each containing n = 14 elements. In order to identify these vectors we iterate 14 times (once for each reaction) the MILP search for an optimal flux solution, each time placing a weight of 1 on only one of the unknowns in the cost function cTx and a weight of 0 on all the others. At the end of the iterations we remove all the duplicate paths identified:

S = [1 -1 0 0 -1 0 -1 0 0 0 0 0 0 0;
 0 1 -1 0 0 0 0 -1 1 -1 0 -1 0 0;
 0 0 1 -1 0 1 1 0 0 0 0 0 0 1;
 0 0 0 0 1 -1 0 1 -1 0 1 0 0 0;
 0 0 0 0 0 0 0 0 0 0 0 1 -1 -1];

[nrows,ncols] = size(S);
NS = null(sym(S)); % or NS = null(S,'r');

dxdt = zeros(nrows,1);
lb = zeros(ncols,1); % Lower bound
ub = ones(ncols,1)*max(abs(S(:))); % Upper bound

c = -eye(ncols);
v_opt = zeros(ncols,ncols);
fval_opt = zeros(ncols,1);
intcon = [1:ncols];
options = optimoptions('intlinprog','Display','off');

for i = 1:ncols
 [v_opt(:,i),fval_opt(i),exitflag,outputa] = ...
 intlinprog(c(i,:),intcon,[],[],S,dxdt,lb,ub,options);
end
v_opt_unique = (unique(round(v_opt'),'rows'))'
 The 9 flux vectors correspond to one futile cycle (m2, shown below) plus additional 8 clearly independent pathways (next page).

The resulting minimal pathways (MP) mi set is:

 m1 m2 m3 m4 m5 m6 m7 m8 m9
v1 0 0 0 1 1 1 1 1 1
v2 0 0 0 0 0 1 1 1 1m2

v3 0 0 0 0 0 0 0 0 1
v4 0 0 1 1 1 0 0 1 1
v5 0 0 0 0 1 0 0 0 0
v6 0 0 1 0 1 0 0 0 0
v7 0 0 0 1 0 0 0 0 0
v8 0 1 0 0 0 0 0 0 0
v9 1 1 0 0 0 0 0 0 0
v10 1 0 0 0 0 0 1 0 0
v11 1 0 1 0 0 0 0 0 0
v12 0 0 0 0 0 1 0 1 0
v13 0 0 0 0 0 1 0 0 0
v14 0 0 0 0 0 0 0 1 0
m1
m3[image:]
m4
m9
m8
m7
m6
m5

COBRA methods: COnstraints Based Reconstruction and Analysis.
Once a suitable basis for the null space of S based on either extreme or minimal set of pathways is obtained, experimentally (or ab-initio) derived constraints on the fluxes included in these pathways can be applied to reconstruct the possible metabolic states of the network in a given condition. These constraints include, among others, enzymes concentrations/activities, compartmentalization, thermodynamic directionality, and their modulation due to the activity of transcription factors or post-translational modifications. The computational methods that use this type of COnstraints Based Reconstruction and Analysis go under the general name of COBRA methods.

There are currently hundreds of COBRA methods that have been developed and used to study different properties of biological networks: a simplified philogenetic tree of these methods is shown in the figure below, taken from the public repository (http://cobramethods.wikidot.com/start) where a list of the methods is maintained.

There are two large branches in the tree, representing unbiased and biased methods, respectively. We will describe a typical example for each of these two classes of methods.

[image:]Unbiased methods. These methods are based on characterizing the contents of the flux solution space by random uniform sampling. This approach involves obtaining a statistically meaningful number of solutions throughout the entire solution space and then studying their properties. Random uniform sampling can be illustrated by looking again at the simple flux split considered in a previous section, represented by the 3 internal reactions (r2, r3, r4) of a small network, after we remove the 3 exchange reactions (r1, r5, r6).

In this case, the subnetwork stoichiometric matrix contains only 1 compound (x2) and 3 reactions, and its null space is a submatrix of the parent matrix null space:

S = [1 -1 -1]
% S = sym(S)
NS = null(S,’r’)

We have seen how the two chosen conical (convex) basis vectors of the null space (shown as red and blue unit vectors on the side) define a plane in a 3-dimensional space containing all the possible values of the flux vector v = [v2 v3 v4]. The maximum and minimum constraints on the fluxes () define intersecting planes that carve a closed space inside the null solution space.

To compute the size, contents, and statistical properties of this solution space, Monte Carlo integration is generally implemented by randomly sampling points within this region. It is easy to sample low dimensional solutions, because they corresponds to simple geometric objects. For example, random points can be readily generated for the simple flux split using uniform random weightings, αi, on the two spanning edges, ni. A random point inside the space is generated by:

Note that the while the maximum values for the fluxes are , the maximum weights that are placed on the basis vectors are switched, α1,max = 4 and α2,max = 6, with the minimum value being 0 in both cases. This leads to the generation of random points inside the smallest parallelogram that includes the feasible flux space:

n1_rand = rand(1,1000)*4;
n2_rand = rand(1,1000)*6;

N_rand_mat = N1(:,ones(1,1000)).*n1_rand(ones(3,1),:) + ...
 N2(:,ones(1,1000)).*n2_rand(ones(3,1),:);
plot3(N_rand_mat(1,:)',N_rand_mat(2,:),N_rand_mat(3,:),'or',...
'MarkerSize',3,'MarkerEdgeColor','blue',...
 'LineWidth',1,'MarkerFaceColor','m')

Then only the points fulfilling all flux constraints () are retained:

x_limit = 6;
y_limit = 4;
z_limit = 5;

x_limited = N_rand_mat(1,:)>x_limit;
y_limited = N_rand_mat(2,:)>y_limit;
z_limited = N_rand_mat(3,:)>z_limit;
xyz_limited = any([x_limited ; y_limited ; z_limited]);
N_rand_mat_limited = ...
N_rand_mat(:,~xyz_limited);
plot3(N_rand_mat_limited(1,:)',N_rand_mat_limited(2,:),N_rand_mat_limited(3,:),'or','MarkerSize',5,'MarkerEdgeColor','blue','LineWidth',1,'MarkerFaceColor','c')

This Monte Carlo procedure can be carried out to generate a very large number of points (i.e. 10e6) for statistical analysis:

n1_rand = rand(1,10e6)*4;
n2_rand = rand(1,10e6)*6;

N1 = double(n1);N2 = double(n2);

N_rand_mat = N1(:,ones(1,10e6)).*n1_rand(ones(3,1),:) + ...
 N2(:,ones(1,10e6)).*n2_rand(ones(3,1),:);

x_limited = N_rand_mat(1,:)>x_limit;
y_limited = N_rand_mat(2,:)>y_limit;
z_limited = N_rand_mat(3,:)>z_limit;
xyz_limited = any([x_limited ; y_limited ; z_limited]);
N_rand_mat_limited = N_rand_mat(:,~xyz_limited);

Out of which we can determine the probability distributions of each of the 3 fluxes:

figure;
[nelems,xcenters] = ...
 hist(N_rand_mat_limited(1,:),40)
nelems = nelems/10e6 ;
bar(xcenters,nelems,'BarWidth',2)
xlabel('V2 value');ylabel('V2 probability')
xlim([0 7])

figure;
[nelems,xcenters] = ...
 hist(N_rand_mat_limited(2,:),40)
nelems = nelems/10e6;
bar(xcenters,nelems,'BarWidth',2)
xlabel('V3 value');ylabel('V3 probability')
xlim([0 7])

figure;
[nelems,xcenters] = ...
 hist(N_rand_mat_limited(3,:),40)
nelems = nelems/10e6;
bar(xcenters,nelems,'BarWidth',1)
xlabel('V4 value');ylabel('V4 probability')
xlim([0 7])

The sampling method described above works well for polytopes of up to 12 dimensions. In spaces of higher dimension, more sophisticated sampling methods are required based on Markov Chain Monte Carlo (MCMC) algorithms. The basic ideas of MCMC is that we start from a known point inside the space and from there we move to the next point chosing a random direction and jumping by a random distance. Various criteria are implemented to increase the probability that each successive jump occurs to a point inside the space. The process is repeated until the desired density of sampling is achieved.

It is important to understand that although they are represented independently as histograms, all the fluxes in a metabolic network are dependent on each other. If we had 'sliders' on each flux distribution, we would see that changing one distribution (i.e. narrowing it) changes simultaneously all the other distributions.

Furthermore, depending on their values, not all the flux constraints may be equally important. For example, if in the simple flux split , then this constraint becomes redundant with respect to the constraints (1st inset on the side). On the other hand, if , then becomes redundant with respect to the constraints (2nd inset on the side). Finally, if, then both and become redundant with respect to , which now has become dominant.

Biased methods. These methods are based on the manipulation of the objective function in order to analyze the capacity of a biological network to achieve different goals within the constraints imposed on it. Mathematically, these constraints are represented as either balances or bounds.

A balance constraint is represented by an equation. In steady state there is no accumulation or depletion of compounds and the fundamental balance equation is the dynamic mass balance equation:

A bound constraint is represented by an inequality. Bounds are constraints that limit the numerical ranges of individual variables and parameters such as concentrations or fluxes. For example, concentrations must always be non-negative and less than the solubility limits:

Upper and lower limits can be applied to individual fluxes:

 where vmin is usually 0, and vmax is limited by the maximum rate constants determined experimentally.

We can imagine constraints as acting in a successive fashion to progressively narrow the range of possible functional states. First, the flux balances (Sv = 0) limit the steady-state fluxes to a subspace that is a hyperplane. If the fluxes are positive v ≥ 0, this plane is converted into a cone. The edges of this cone represent the basis of the subspace, a set of unique extreme (or minimal set) pathways (shown below as three red, green and blue vectors) such that all the points inside the cone can be represented as non-negative combinations of these pathways. Finally, upper bounds on the individual reactions (vmax) in the extreme pathways (shown below as orthogonal planes) limit the length of each edge. This closes the cone and forms a closed solution space that contains all the allowed network steady states.

Additional 'adjustable' constraints originate from regulatory events of either transcriptional or post-translational nature. For example, if the flux through a certain reaction is regulated, then the shape of the solution space is changed.

Once constraints are properly incorporated in the mathematical genome scale model (GEM) of a biological network, biased COBRA methods use various optimization algorithms to maximize or minimize a given objective function. The optimization methods used generally fall into 4 categories:

	
	Objective function
	Constraint

	
	
	

	
	
	

	
	
	

	
	
	

The most popular applications of biased COBRA methods are:
· Flux Balance Analysis (FBA): methods to assess various properties of networks.
· Methods to assess the consequences of deleting genes.
· Methods to design strains for metabolic purposes.

The most important step in the application of biased COBRA methods is the choice of the objective function that allows the identification of a particular functional state in the space of possible solutions. The most interesting types of objective functions are those that represent physiological functions or bioengineering objectives. Some example are:

· Minimize or maximize ATP production: find conditions of optimal energy efficiency.

· Minimize nutrient uptake: find conditions to carry out a particular function with minimal consumption of nutrients.

· Minimize the 1- or 2-norm of the flux vector: determine how a cell channels metabolites at the lowest overall flux. Since protein synthesis is expensive, it is worthwhile for the cell to find a way to keep functioning using the lowest amount of enzymes in its metabolic pathways. If the 2-norm is chosen the minimization uses quadratic programming (QP).

· Maximize metabolite production: find the maximal production rate of a chosen metabolite (i.e., an amino acid).

· Maximize biomass formation: determine the maximal growth rate of a cell in a given environment.

· Maximize biomass and metabolite production: find the best compromise between cell growth and metabolite production.

We have seen how FBA seeks to maximize or minimize an objective function:

where c is a vector of weights indicating how much each reaction (such as the biomass reaction when simulating maximum growth) contributes to the objective function. In practice, when only one reaction is desired for maximization or minimization, c is a vector of 0 with a value of 1 at the position of the reaction of interest. Optimization of such a system is accomplished by LP. FBA can thus be defined as the use of linear programming to identify the best cost function:

The output of FBA is a particular flux distribution, v, which maximizes or minimizes the objective function.

FBA is suitable for determining fluxes at steady state and can be computed very quickly even for large networks. However, since it does not use kinetic parameters, unless the size of metabolic pools is defined it cannot predict metabolite concentrations. Furthermore, except in some modified forms, FBA does not account for regulatory effects such as activation of enzymes by protein kinases or regulation of gene expression.

We can examine some applications of FBA using a simplified metabolic network of a bacterial cell. Many metabolic network models ready to be used in FBA analysis can be retrieved from the BiGG database (http://bigg.ucsd.edu). In this section we will use the COBRA Toolbox (https://www.mathworks.com/matlabcentral/linkexchange/links/3050) for MATLAB developed by Bernhard Palsson’s group (http://systemsbiology.ucsd.edu/Researchers/Palsson), to carry out an FBA analysis of the Escherichia coli 'core' metabolism model (http://bigg.ucsd.edu/models/e_coli_core). This model, which includes all the fueling reactions (catabolism), contains 94 internal/exchange reactions and a biomass objective function. It is utilized extensively in tutorials of Systems Biology. In particular, in our analysis, we will use excerpts from the COBRA2 tutorial published by Becker, S. et al., "Quantitative prediction of cellular metabolism with constraint-based models: The COBRA Toolbox", Nat. Protoc 2, 727-738 (2007), which is freely available for download from https://www.nature.com/protocolexchange/protocols/2097.

First, we need to install and initialize the COBRA toolbox, which can be downloaded following the link at MATLAB Central shown above, or directly from https://opencobra.github.io/cobratoolbox/latest/. A convenient location to store the toolbox is our TOOLBOXES directory, usually under the name ‘cobratoolbox’:

cd ../TOOLBOXES/cobratoolbox
initCobraToolbox()
cd ../../CODE
addpath(genpath('../TOOLBOXES/cobratoolbox'));

If the LP solver Gurobi (http://www.gurobi.com), preferentially used by the COBRA Toolbox, is installed in our system, we can initialize its interface with MATLAB:
cd /Library/gurobi702/mac64/matlab
gurobi_setup

Then, we load a simplified model of E. coli metabolism from the BiGG database at:
http://bigg.ucsd.edu/models/e_coli_core
or directly from inside the installed COBRA Toolbox:
model = …
readCbModel('../TOOLBOXES/cobratoolbox/test/additionalTests/testMaps/ecoli_core_model.mat'); default_model = model;

Visual representation of a metabolic network can aid in understanding the model. Maps for a variety of metabolic pathways are available for many of the models maintained in the BiGG database. A map of the E. coli core metabolism is provided inside the COBRA Toolbox:
map = …
readCbMap('../TOOLBOXES/cobratoolbox/test/additionalTests/testMaps/ecoli_core_map.txt'); changeCbMapOutput('matlab');
drawCbMap(map);
[image:]
The core E. coli model S matrix can be visualized by using the spy command in MATLAB. This command will represent all non-zero entries in S with a dot.

model = default_model;
S_full = full(model.S);
spy(model.S);

[bookmark: _GoBack][image:]The S matrix can be converted into a binary matrix (Sbin), by replacing all non-zero elements in S with a 1. Then, all ones in each row of the Sbin can be summed to determine the Metabolite Connectivity, the number of reactions a metabolite is involved in. Conversely, all ones in each column of Sbin can be summed to determine the Reaction Participation:

Sbin = zeros(size(model.S));
Sbin(find(model.S)) = 1;
metConnectivity = sum(Sbin,2);
rxnParticipation = sum(Sbin)';

As a 1st example of FBA analysis we can calculate the growth of E. coli on glucose under aerobic conditions. Anaerobic growth can be calculated by constraining the maximum rate of uptake of oxygen to zero.

It is very important to understand how the objective function for the calculation of growth is derived. Growth can be represented through the experimentally determined amounts of cofactors and biosynthetic precursors required to synthesize cellular biomass. For E. coli to grow, all these components must be provided in the appropriate stoichiometric amounts. In addition to the material that is needed to form the biomass, energy cofactors are needed to drive the biosynthesis process. ATP, NAD, and NADPH are used up, and the corresponding amounts of ADP, NADP, and NADH must be produced. Protons and inorganic phosphate are produced as ATP is hydrolyzed with the consumption of water.

Thus, biomass generation can be represented as a linked set of reaction fluxes that drain metabolites in appropriate ratios. The total stoichiometric requirements for making one gram of E. coli biomass from cofactors and biosynthetic precursors have been estimated. In practice, these requirements are assembled together in a single 'biomass' reaction. In the S matrix of the core E. coli model, this is reaction no. 13. We can easily extract these stoichiometries from the matrix (see Table below):

biomass_met_ind = find(S_full(:,10));biomass_met_n = length(biomass_met_ind);
biomass_met_names = model.metNames(biomass_met_ind);
biomass_met_stoic = S_full(biomass_met_ind,13);
biomass_met_cell = cell(biomass_met_n,2)
biomass_met_cell(:,1) = biomass_met_names(:)
for i = 1: biomass_met_n
biomass_met_cell(i,2) = {biomass_met_stoic(i)};
end
biomass_met_cell

	'3_Phospho_D_glycerate'
	-1.4960

	'Acetyl_CoA'
	-3.7478

	'ADP'
	59.8100

	'2_Oxoglutarate'
	4.1182

	'ATP'
	-59.8100

	'Coenzyme_A'
	3.7478

	'D_Erythrose_4_phosphate'
	-0.3610

	'D_Fructose_6_phosphate'
	-0.0709

	'Glyceraldehyde_3_phosphate'
	-0.1290

	'D_Glucose_6_phosphate'
	-0.2050

	L-Glutamine
	-0.2557

	L-Glutamate
	-4.9414

	'H2O'
	-59.8100

	'H'
	59.8100

	'Nicotinamide_adenine_dinucleotide'
	-3.5470

	'Nicotinamide_adenine_dinucleotide_reduced'
	3.5470

	'Nicotinamide_adenine_dinucleotide_phosphate'
	13.0279

	'Nicotinamide_adenine_dinucleotide_phosphate_reduced'
	-13.0279

	'Oxaloacetate'
	-1.7867

	'Phosphoenolpyruvate'
	-0.5191

	'Phosphate'
	59.8100

	'Pyruvate'
	-2.8328

	'alpha_D_Ribose_5_phosphate'
	-0.8977

The corresponding objective function:

has a c vector with 0 everywhere with the exception of a single 1 at the position of the biomass reaction. The optimization problem then maximizes the value of Zbiomass so that all the precursors are drained in the appropriate ratios from a given substrate that enters the network.

If this substrate is glucose, Zbiomass is maximized from an input of 1 mmol glucose per g DW (grams dry weight) per hour. To compute the mass yield we have to compute the mass flow of glucose in. Since glucose molecular weight is 180 g/mol, this corresponds to an uptake rate of 0.18 g Gluc/g DW/ h. Note that the growth rate is proportional to the uptake rate, but the yield is always the same. Thus, the time ordinate is arbitrary in the simulation as it is set by the uptake rate that one uses in the computations.

First, we set the maximum glucose uptake rate to 18.5 mmol gDW-1hr-1 (millimoles per gram dry cell weight per hour, the default flux units used in the COBRA Toolbox):

model = changeRxnBounds(model,'EX_glc(e)',-18.5,'l');

This changes the lower bound ('l') of the glucose exchange reaction to -18.5, a biologically realistic uptake rate. By convention, exchange reactions are written as export reactions (e.g. glc[e] <==>), so import of a metabolite is a negative flux. We also allow unlimited oxygen uptake:

model = changeRxnBounds(model,'EX_o2(e)',-1000,'l');

By setting the lower bound of the oxygen uptake reaction to such a large number, it is practically unbounded. Next, we ensure that the biomass reaction is set as the objective function:

model = changeObjective(model, Biomass_Ecoli_core_N(w/GAM)-Nmet2');

Finally, we perform FBA with maximization of the biomass reaction as the objective:

FBAsolution_aer = optimizeCbModel(model,'max')
printFluxVector(model,FBAsolution_aer.x)

The vector FBAsolution.f gives the value of the objective function Z as 1.6531 (flux no. 13). This means that the model predicts a growth rate of 1.6531 hr-1.

Inspection of the flux distribution vector FBAsolution.x shows that there is high flux in the glycolysis, pentose phosphate, TCA cycle, and oxidative phosphorylation pathways, and that no organic by-products are secreted. The flux distribution FBAsolution.x can be also be easily superimposed of the reaction map (pathway with 0 flux are shown as thin black lines):

changeCbMapOutput('svg');
drawCbMap(map);
drawflux_options = struct('lb',0,'zeroFluxWidth',0.2,'zeroFluxColor',[0.9,0.9,0.9]);
[image:]drawFlux(map,model,FBAsolution.x,drawflux_options)

The same simulation can be performed under anaerobic conditions. The lower bound of the oxygen exchange reaction is now 0, so oxygen cannot enter the system.

model = changeRxnBounds(model,'EX_o2(e)',0,'l');
FBAsolution = optimizeCbModel(model,'max')
printFluxVector(model,FBAsolution.x)

The resulting growth rate is now much lower, 0.4706 hr-1. The flux distribution shows that oxidative phosphorylation is not used under these conditions, and that acetate, formate, and ethanol are produced by fermentation pathways.

[image:]In our second example we will calculate the maximal aerobic yield of ATP that the E. coli core model can achieve utilizing a given substrate. The objective function in this case is simply the reaction of hydrolysis of ATP (ATP maintainance reaction, ATPM, reaction no. 11):

which is a proxy for any ATP yielding process we may want to study. In the cases studied below, we use an input value of 1 for glucose. The calculations can be done in a dimensionless setting because we are computing yields, which are relative numbers. To calculate the optimal ATP production, we first use the function changeRxnBounds to constrain the glucose exchange reaction (EX_glc(e)) to exactly -1 mmol gDW-1 hr-1 by setting both the lower and upper bounds to -1 ('b').

model = default_model;
model = changeRxnBounds(model,'EX_o2(e)',-1000,'l');
model = changeRxnBounds(model,'EX_glc(e)',-1,'b');

Next, set the ATP maintenance reaction (ATPM, reaction no. 11) as the objective to be maximized using changeObjective. ATPM works as an objective for maximizing ATP production because in order to consume the maximum amount of ATP, the network must first produce ATP by the most efficient pathways available by recharging the produced ADP. By default, this reaction has a lower bound of 8.39 mmol gDW-1 hr-1 to simulate non-growth associated maintenance costs (NGAM). The constraint on this reaction is removed by using changeRxnBounds to set the lower bounds to 0 and the upper bound to 1000.

model = changeObjective(model,'ATPM');
model = changeRxnBounds(model,'ATPM',0,'l');
model = changeRxnBounds(model,'ATPM',1000,'u');

Finally, we optimize the model:

FBAsolution = optimizeCbModel(model,'max')

The calculated maximum yield of ATP is 17.5 mol ATP/mol glucose. A more thorough analysis of the solution is obtained by looking at shadow prices and reduced costs. For each FBA solution derived from linear programming we also get m shadow prices (one for each metabolite) and n reduced costs (one for each reaction). In the COBRA Toolbox, the vector of m shadow prices is FBAsolution.y and the vector of n reduced costs is FBAsolution.w.

Reduced costs are the derivatives of the objective function with respect to reactions fluxes, indicating how much each particular reaction affects the objective.

Shadow prices are the derivative of the objective function with respect to the time derivative of a metabolite. They indicate how much the deviation from steady state (e.g., constant increase or costant decrease) of that metabolite will increase or decrease the objective.

The shadow prices and reduced costs reported by the COBRA toolbox are actually the negative of the vectors of shadow prices and reduced costs derived by the linear programming routines that run inside the COBRA toolbox. We can ascertain this by running these routines outside the toolbox in minimization mode as opposed to the maximization mode used inside the COBRA toolbox:

FBA solution with MATLAB linprog

c = zeros(95,1); c(11) = -1
lb = model.lb;
ub = model.ub;
dxdt = zeros(72,1);

% options = optimoptions(@linprog,'Algorithm','interior-point-legacy');
% options = optimoptions(@linprog,'Algorithm','interior-point');
options = optimoptions(@linprog,'Algorithm','dual-simplex');
% options = optimoptions(@linprog,'Algorithm','simplex');
[v_opt_ATP,fval_opt_ATP,exitflag,output,lambda_ATP] = ...
 linprog(c,[],[],S_full,dxdt,lb,ub,[],options);

v_opt_ATP
fval_opt_ATP
lambda_equal_ATP = lambda_ATP.eqlin;
lambda_upper_ATP = lambda_ATP.upper;
lambda_lower_ATP = lambda_ATP.lower;
shadow_prices_ATP = -lambda_ATP.eqlin
reduced_costs_ATP = c-S_full'*-lambda_ATP.eqlin
reduced_costs_ATP = lambda_lower_ATP - lambda_upper_ATP

FBA solution with GUROBI via MATLAB interface

c = zeros(95,1); c(11) = -1;
lb = model.lb;
ub = model.ub;
dxdt = zeros(72,1);

Aeq = sparse(S_full);
gu_model.A = Aeq;
gu_model.obj = c;
gu_model.rhs = dxdt;
gu_model.sense = repmat('=', size(Aeq,1), 1);
gu_model.lb = lb;
gu_model.ub = ub;
gu_model.modelsense = 'min';

params.outputflag = 0;
result = gurobi(gu_model, params);

v_opt_ATP_gu = result.x
fval_opt_ATP_gu = result.objval;
shadow_prices_ATP_gu = result.pi;
% reduced_costs_gu = c-S_full'*shadow_prices_gu
reduced_costs_ATP_gu = result.rc;

FBA solution with GLPK

c = zeros(95,1); c(11) = -1
ctype = repmat('S',1,72);
vartype = repmat('C',1,95);
sense = 1;
[v_opt_ATP_glpk, fval_opt_ATP_glpk, status, extra] = glpk (c, S_full, dxdt, lb, ub, ctype,...
 vartype,sense);
v_opt_ATP_glpk
fval_opt_ATP_glpk
shadow_prices_ATP_glpk = extra.lambda
reduced_costs_ATP_glpk = extra.redcosts

Compare linprog, gurobi-MATLAB, glpk, COBRA-glpk

v_opt_comp = [v_opt_ATP v_opt_ATP_gu v_opt_ATP_glpk FBAsolution_ATP.x];
for i = 1:72
shadow_prices_comp{i,1} = model.mets(i)
shadow_prices_comp{i,2} = model.metNames(i)
shadow_prices_comp{i,3} = shadow_prices_ATP(i)
shadow_prices_comp{i,4} = shadow_prices_ATP_gu(i)
shadow_prices_comp{i,5} = shadow_prices_ATP_glpk(i)
shadow_prices_comp{i,6} = FBAsolution_ATP.y(i);
end

for i = 1:95
reduced_costs_comp{i,1} = model.rxns(i)
reduced_costs_comp{i,2} = model.rxnNames(i)
reduced_costs_comp{i,3} = reduced_costs_ATP(i)
reduced_costs_comp{i,4} = reduced_costs_ATP_gu(i)
reduced_costs_comp{i,5} = reduced_costs_ATP_glpk(i)
reduced_costs_comp{i,6} = FBAsolution_ATP.w(i)
end

All shadow prices and reduced costs are the same despite the difference in running mode (maximization for COBRA-glpk, minimization for standalone linprog, gurobi, glpk).

The rational for taking the negative of the shadow prices is explained below in reference to ATP production.

An important consequence of the concept of shadow prices is that if we look at the shadow price of any metabolite that could potentially be used as a substrate to produce ATP, the shadow price gives us directly the yield of ATP per mole of that substrate.

For example, the actual shadow prices of cytosolic and extracellular succinate (metabolites no. 69 and 70) are 8.75 and 9.00, respectively. This means that if the time derivative is a positive number (= succinate concentration increases constantly inside the cell) instead of 0 (= steady state), the production of ATP (the value of the objective function) actually decreases by a proportional amount because succinate is not used to generate ATP. Thus, the negative of the shadow price for succinate (= the value of the vector FBAsolution.y for succinate) tells us how much ATP is produced per mole of succinate: in this case we find that the addition of 1 mole of succinate to the system, whether cytosolic or extracellular would increase the amount of ATP by 8.75-9.0 moles. I

In principle, we could repeat the calculation of the ATP yield using substrates different from glucose (for example, succinate), but the shadow prices of these substrates in just one simulation are sufficient to provide the correct information.

Finally, we can calculate the P/O ratio for aerobic oxidative phosphorylation by simply dividing the flux of ATP hydrolysis (flux no. 11) by the flux of oxygen uptake (flux no. 36): it is 17.5/6 = 2.92, close to the theoretical value of 3.

Another method that uses FBA to analyze network properties is Robustness Analysis. In this method, a type of sensitivity analysis (as described in CHAPTER 7), the flux through one reaction is varied and the optimal objective value is calculated as a function of this flux. This reveals how sensitive the objective is to a particular reaction. Many combinations of reaction and objective can be investigated. For example, to determine the effect of varying glucose uptake on growth, first we use changeRxnBounds to set the oxygen uptake rate (EX_o2(e)) to 17 mmol gDW-1 hr-1, a realistic uptake rate.

model = default_model;
model = changeRxnBounds(model,'EX_o2(e)',-17,'b');

Then, we use a loop to set both the upper and lower bounds of the glucose exchange reaction to values between 0 and -20 mmol gDW-1 hr-1, and perform FBA with each uptake rate:

growthRates = zeros(21,1);
for i = 0:20
model = ...
changeRxnBounds(model,'EX_glc(e)',-i,'b');
FBAsolution = optimizeCbModel(model,'max');
growthRates(i+1) = FBAsolution.f;
end
plot([0:20]',growthRates)
xlabel('Glucose uptake rate')
ylabel('Growth rate')

The results can then be plotted. As expected, with a glucose uptake of 0 mmol gDW-1 hr-1, the maximum possible growth rate is 0 hr-1. Growth remains at 0 hr-1 until a glucose uptake rate of about 2.83 mmol gDW-1 hr-1, because with such a small amount of glucose, the system cannot make 8.39 mmol gDW-1 hr-1 ATP to meet the default lower bound of the ATP maintenance reaction (ATPM). This reaction simulates the consumption of ATP by non-growth associated processes such as maintenance of electrochemical gradients across the cell membrane. Once enough glucose is available to meet this ATP requirement, growth increases rapidly as glucose uptake increases. At an uptake rate of about 7.59 mmol gDW-1 hr-1, growth does not increase as rapidly. It is at this point that oxygen and not glucose limits growth. Excess glucose cannot be fully oxidized, so the fermentation pathways are used.

The oxygen uptake rate can also be varied with the glucose uptake rate held constant. With glucose uptake fixed at 10 mmol gDW-1 hr-1, growth rate increases steadily as oxygen uptake increases. At an oxygen uptake of about 21.80 mmol gDW-1 hr-1, growth actually begins to decrease as oxygen uptake increases. This is because glucose becomes limiting at this point, and glucose that would have been used to produce biomass must instead be used to reduce excess oxygen to H2O and CO2. In the previous example, growth rate continues to increase once oxygen become limiting because E. coli can grow on glucose without oxygen. In this example, E. coli cannot grow with oxygen without a corresponding amount of glucose (or another carbon source), so growth decreases when excess oxygen is added.

model = default_model;
model = changeRxnBounds(model,'EX_glc(e)',-10,'b');
growthRates = zeros(21,1);
for i = 0:30
model = changeRxnBounds(model,'EX_o2(e)',-i,'b');
FBAsolution = optimizeCbModel(model,'max');
growthRates(i+1) = FBAsolution.f;
end
plot([0:30]',growthRates)
xlabel('O_2 uptake rate');ylabel('Growth rate')

FBA can also be used to simulate Gene knockouts by changing reaction bounds. To simulate the knockout of any gene, its associated reaction or reactions can simply be constrained to 0 flux. By setting both the upper and lower bounds of a reaction to 0 mmol gDW-1 hr-1, a reaction is essentially knocked out. The E. coli core model contains a list of gene-reaction interaction rules (GRs). When a reaction is catalyzed by isozymes, all the genes must be knocked out for the reaction to be constrained. For example, the GR for phosphofructokinase (PFK) is b1723 (pfkB) or b3916 (pfkA), so both pfkB and pfkA must be knocked out to restrict this reaction. When a reaction is catalyzed by a protein with multiple essential subunits, if any of the genes are knocked out the reaction is constrained to 0 flux. Succinyl-CoA synthetase (SUCOAS), for example, has the GR b0728 (sucC) and b0729 (sucD), so knocking out either of these genes will restrict this reaction.

The COBRA Toolbox contains a function called deleteModelGenes that uses the GR interaction rules to constrain the correct reactions. Then, FBA may be used to predict the model phenotype with gene knockouts. For example, growth can be predicted for E. coli growing aerobically on glucose with the gene b1852, corresponding to the reaction glucose-6-phosphate dehydrogenase (G6PDH2r), knocked out.

model = default_model;
[del_model,hasEffect,constrRxnNames,deletedGenes] = ...
 deleteModelGenes(model,model.genes(40))

del_model = changeRxnBounds(del_model,'EX_glc(e)',-18.5,'l');
del_model = changeRxnBounds(del_model,'EX_o2(e)',-1000,'l');
del_model = changeObjective(del_model,'Biomass_Ecoli_core_N__w_GAM_');

FBAsolution = optimizeCbModel(del_model,'max')
printFluxVector(del_model,FBAsolution.x)

changeCbMapOutput('svg');
drawCbMap(map);
drawflux_options = struct('lb',0,'zeroFluxWidth',0.2,'zeroFluxColor',[0.9,0.9,0.9]);
drawFlux(map,del_model,FBAsolution.x,drawflux_options)

The FBA predicted growth rate of this strain is 1.6329 hr-1, which is slightly lower than the growth rate of 1.6531 hr-1 for wild-type E. coli because the cell can no longer use the oxidative branch of the pentose phosphate pathway to generate NADPH. Because FBA can compute phenotypes very quickly, it is feasible to use it for large scale computational screens for gene essentiality, including screens for two or more simultaneous knockouts.

The COBRA Toolbox provides also algorithms for metabolic engineering. As an example, we can design a strain that will maximize lactate production under anaerobic conditions. For this purpose, we first adjust the minimal medium composition to be anaerobic and to contain a supply of glucose (20 mmol · gDW-1 · h-1).

clear, clc, close all
model = …
readCbModel('../TOOLBOXES/cobratoolbox/test/additionalTests/testMaps/ecoli_core_model.mat'); default_model = model;
clear model

Here we load a slightly different model containing information on reactions reversibility from inside the COBRA Toolbox.
global CBTDIR

load([CBTDIR, filesep, 'test' filesep 'models' filesep 'ecoli_core_model.mat'], 'model');

Here we copy the reversibility information to the default model.
default_model.rev = model.rev;

Here we update the active model from the modified default model.
model = default_model;

% set the tolerance
tol = 1e-3;

model = changeRxnBounds(model, 'EX_o2(e)', 0, 'l'); % anaerobic
model = changeRxnBounds(model, 'EX_glc(e)', -20, 'l'); % set glucose uptake to 20

Then, we build a list of candidate reactions for deletion to optimize lactate formation. It is important to exclude from this list critical reaction for cell viability like the exchange and transport reactions, and the biomass and ATP maintenance requirements.

selectedRxns = {model.rxns{ [1, 3:5, 7:8, 10, 12, 15:16, 18, 40:41, 44,46, 48:49, 51, 53:55, 57, 59:62, 64:68, 71:77, 79:83, 85:86, 89:95]}};

Finally, we optimize for lactate secretion with 5 deletions or less using the OptKnock method:

minGrowthRate = 0.05;

Default OptKnock settings
options.numDelSense = 'L';
options.vMax = 1000;
options.solveOptKnock = true;

Here we set up the lower limit on growth rate and ATPM flux
biomassRxnName = 'Biomass_Ecoli_core_N(w/GAM)-Nmet2';
constrOpt.sense = 'GE'; % 'G' greater,'E' equal,'L' less
constrOpt.values = [minGrowthRate 8.39];
constrOpt.rxnList = {biomassRxnName, 'ATPM'};

% Previous solutions that should not be repeated again
previousSolution = [];

Here we run OptKnock: we can change the target substrate in different simulations.
options.targetRxn= 'EX_lac-D(e)';
options.numDel = 5;
substrateRxn = 'EX_glc(e)';

Change or set a time limit
maxTime = 3600; %time in seconds
changeCobraSolverParams('MILP', 'timeLimit', maxTime);

Define the solver package to be used
solverPkgs = {'gurobi6'};
changeCobraSolver(solverPkgs, 'MILP', 0);

The function that actually runs optknock
[optKnockSol,bilevelMILPproblem] = OptKnock(model, selectedRxns, options, constrOpt, previousSolution, 0, 'optknocksol');

Tag for the solution
optKnockSol.substrateRxn = substrateRxn;
optKnockSol.targetRxn = options.targetRxn;
optKnockSol.numDel = options.numDel;

Check the result from OptKnock
[growthRate, minProd, maxProd] = testOptKnockSol(model, optKnockSol.targetRxn, optKnockSol.rxnList);

Result display
fprintf('\n\nSubstrate = %s \nTarget reaction= %s \n', optKnockSol.substrateRxn , options.targetRxn);
fprintf('Optknock solution is: %f \n\n', optKnockSol.obj);
optKnockSol.rxnList
growthRate

The resulting knockout list (optKnockSol.rxnList) includes acetaldehyde dehydrogenase (ACALD), glutamate dehydrogenase (GLUDy), NADP dependent malic enzyme (ME2), Fumarase (FUM), and pyruvate kinase (PYK). The resulting knockout predicted growth rate is ~0.142 (Biomass formation, reaction no. 13), and the lactate excretion rate is ~37.7 (reaction no. 33).

Alternatively, we can use the Genetic Design Local Search (GDLS) algorithm to identify what to knock out to increase lactate production.

[gdlsSolution, bilevelMILPproblem, gdlsSolutionStructs] = GDLS(model, ‘EX_lac-D(e)’, ‘minGrowth’, 0.05, ‘selectedRxns’, selectedRxns, ‘maxKO’, 5, ‘nbhdsz’, 3);

The resulting knockout list (gdlsSolution.KOs) is alcohol dehydrogenase (ALCD2x), NADH Dehydrogenase (NADH16), NADP dependent malic enzyme (ME2), phosphotransacetylase (PTAr), and pyruvate kinase (PYK). The resulting knockout predicted growth rate is ~0.151 and the lactate excretion rate is again ~37.7.

Thus, although OptKnock and GDLS chose some different genes to knock out, both decisions result in the same optimal flux distribution.

PRACTICE

1. A MATLAB scripts is provided for the simulation of erythrocyte metabolism with SimBiology (../TUTORIALS/ERYTHROCYTE_METABOLISM/Erythrocyte_Metabolism_Practice.m). In order to run the script you need to install the COBRA (https://www.mathworks.com/matlabcentral/linkexchange/links/3050) and MetaTool (http://pinguin.biologie.uni-jena.de/bioinformatik/networks/metatool/metatool5.1/metatool5.1.html) Toolboxes for MATLAB.

Execution of the script cell by cell provides a review of the following:

a. Fundamental mathematical features of the stoichiometric matrix.

b. Different types of adjacency matrices.

c. SVD of the stoichiometric matrix. Show how linear combinations of metabolites are moved by linear combinations of fluxes.

[image:]d. Elementary Modes. Elementary Mode Analysis and Extreme Pathway Analysis are closely related methods for uncovering important pathways in cellular metabolism. When reactions in a network are reversible, there are more elementary modes than extreme pathways, as only linearly independent pathways are included in the extreme pathway subset. This concept is illustrated in the figure on the side: in this small network there are four elementary modes, but only three extreme pathways, since pathway 4 is a linear combination of pathways 1 and 3.

e. Conserved pools. Conserved pools are identified using Simbiology functions and also more general MATLAB functions based on the concept of the left null space of the stoichiometric matrix.

f. Dynamic simulations. This section shows how to carry out a dynamic (time dependent) simulation of the erythrocyte metabolic network.

2. A MATLAB tutorial (https://www.nature.com/protocolexchange/protocols/2097) from the article: Becker, S. et al., "Quantitative prediction of cellular metabolism with constraint-based models: The COBRA Toolbox", Nat. Protoc 2, 727-738 (2007), can be used to analyze E. coli core metabolism with the COBRA Toolbox. Execution of the script cell by cell provides a review of additional types of COBRA analysis not discussed in this chapter:

a. Growth on alternate substrates.
b. Alternate optimal solutions - Flux Variability Analysis (FVA).
c. Double gene deletions.
d. Identification of essential genes for biomass production.
e. Metabolites connectivity and reaction essentiality.
f. Random sampling.

19-49

image3.tiff

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image8.tiff

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image17.png

image18.png

image19.png

image20.png

image16.png

image17.tiff

image21.png

image22.emf

rj

ci

=
uk

c’i

m x n m x n

sk

n x n

r

r

r’j

vk

n x n

S U S VT

Eigenreaction Eigenconnectivity
Singular	
value

r

j

c

i

=

u

k

c’

i

mxn mxn

s

k

nxn

r

r

r’

j

v

k

nxn

S U

S

V

T

Eigenreaction

Eigenconnectivity

Singular	

value

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image31.png

image32.png

image33.png

image34.png

image35.png

image36.png

image37.png

image38.png

image39.png

image40.png

image41.png

image42.png

image43.png

image44.png

image45.png

image48.png

image49.png

image46.png

image47.png

image52.png

image53.png

image50.png

image51.png

image54.png

image57.png

image58.png

image59.png

image55.png

image56.png

image60.png

image61.png

image64.png

image65.png

image66.png

image67.png

image62.png

image63.png

image68.png

image69.png

image1.tiff

image72.png

image73.png

image74.png

image75.png

image70.png

image2.tiff

image71.png

image76.png

image77.png

image78.png

image79.png

image82.png

image83.png

image80.tiff

