Eigenvalues and eigenvectors.

In this chapter we are dealing only with square matrices. We have seen that when a matrix A acts on a vector x , that matrix behaves like a function, or, in the language of linear algebra, as an operator:

Ax = f(x)

x  A acts on x  Ax

Vector x comes in, and vector Ax comes out.  We are particularly interested in a special class of vectors x: 

those vectors x that come in, such that the vectors Ax that come out, come out in the same direction as x !

This means that Ax will be parallel to x, although it might be of different length (a multiple or a fraction of x). That is very unusual, because in most cases Ax will come out in a different direction from x.  If Ax is parallel to x we say that x is an eigenvector of A, and the number by which we multiply x to obtain Ax is its corresponding eigenvalue. We can express this concept with the matrix equation:
eigenvector
eigenvalue










Of course x is not a single vector, but a basis vector for a vector space, because any multiple of x will still fulfill the same equation (Ax will come out in the same direction as x).  can be any number (positive or negative) and even 0!  But if  is 0 we have:



We have already encountered this case: what are the eigenvectors corresponding to  = 0 ? They are the vectors in the null space of A! By now we know that if there is something in the null space, it means the matrix A will bring some vectors to 0, and once you go to 0 there is no way to come back! Therefore:

if any eigenvalue of A is 0, then A is non-invertible = SINGULAR

But we are interested in all possible eigenvalues of A, not just those with  = 0, and unfortunately we do not have an easy way to solve the system of equations  because we have 2 unknown (the eigenpair x and ), and they are multiplied together, so we can't use Gaussian elimination. 

For some simple matrices, it is very easy to find some or all the possible eigenpairs, but special algorithms are required for large matrices. We will not discuss the algorithms that can be used for this purpose, but we will focus instead on the meaning of eigenvectors and eigenvalues and on some of their applications.

Example 1: consider a type of matrix we know very well: a projection matrix P. We ask the question: what are the eigenvectors and eigenvalues of a projection matrix? As an example we can consider a projection matrix P that projects any vector b in R3 onto a plane subspace of R3.
[image: ]
In the example shown on the side, is b an eigenvector of P? Of course NO, because its projection p is not parallel to b. However, any vector in the plane is an eigenvector, because the projection does not change its direction! What is the eigenvalue of any of these vectors? Of course it's 1, because the projection of any vector in the plane onto that same plane does not change its length! 

So we have a full plane of eigenvectors! Any two linearly independent vectors (for example s1 and s2) in this plane will be basis vectors for the eigenvectors space and their eigenvalues will be λ1 = λ2 = 1.

Are there any other eigenvectors? In fact, there is one other vector that is an eigenvector of P: it is the vector perpendicular to the plane (for example s3), and it has eigenvalue λ3 = 0 (that is, the projection of s3 on the plane is just the origin).

[image: ]Thus, we can say that P has three eigenvectors (as a basis):λ3 = 0
Ps1 = s1

Ps2 = s2

λ1 = 1

λ2 = 1

s1 and s2 are in the column space of P
Ps3 = 0

s3 is in the null space of P


When we studied the 4 fundamental spaces of a matrix we learned that the column space C(P) of P is perpendicular to the left null space LN(P) of P. Now we learn that the null space N(P) of a projection matrix P is also perpendicular to C(P). Thus, in a projection matrix N(P) = LN(P). Since we know that N(P) is also perpendicular to the row space R(P), it follows that in an projection matrix R(P) = C(P), as we expected from the fact that P is symmetric.  

These properties of the specific projection matrix we have analyzed are valid for all projection matrices that project orthogonally to a space, so we can conclude that no matter how large a projection matrix is, its eigenvalues are always 1 and 0. Since at least 1 eigenvalue is 0, projection matrices that project onto a subspace are always SINGULAR.

Example 2: consider the identity matrix:



If we switch rows 2 and 3 we obtain a new matrix P:



If we multiply the new matrix by a vector x we find that the resulting vector Px is a permutation of the rows of x.



For this reason P is called a permutation matrix (not to be confused with a projection matrix, which we typically also identify with the letter P) . Permutation matrices are commonly used in the software implementation of Gaussian elimination, because in many cases the operation can be faster and numerically more stable if the rows of a matrix are exchanged. However, in this case we are not interested in the application of permutation matrices, but in their eigenvectors and eigenvalues. These can be easily found for the matrix P above. For example, we can see that the following three products provide us with the desired information:


				     P	     s1    		  λ1     s1


				  P	  s2     		  	  λ2    s2


				P	 s3   =  		 λ3     s3

Let's think about the meaning of what we just found. We have 3 basis vectors, the eigenvectors s1, s2, s3, and we know that the operation carried out by the matrix P on each of the three eigenvectors is simply the multiplication of each eigenvector by its corresponding eigenvalue. We can represent this as the following matrix equation:


		     P	            S             =  	       S	 	      Λ

where Λ is a diagonal matrix containing all the eigenvalues.

Now let's imagine we have a vector a in standard Cartesian basis

    and we want to represent it as as using the eigenvector basis S:    

Clearly, we can find some linear combination of the three eigenvectors s1, s2, s3:

++

where a1, a2, and a3 are just the scalar coefficients multiplying each of the basis vectors such that:
	Now let's consider the product ; substituting for  the linear combination 

 we obtain:	

but we know that   so we can further substitute:



Notice what we are doing in order to calculate  (going for each element from left to right):

1. we find the coordinates a1, a2, a3 of a in the eigenvector basis S. We know how to do this: it is a simple change of basis:



2. we multiply each coordinate by its corresponding eigenvalue:



3. we multiply the resulting product by each eigenvector:



The three steps are:

move a into S space		 

mutiply by the eigenvalues		 

move back into standard space	

The final result is:



which means we are representing P as:



This is called the spectral or eigen decomposition of P.

We can view the equality  from another point of view: as a similarity transformation! In fact:



This means that Λ is similar to P in S space: we say the P is diagonalized in S space.

It's very important to remember that if we have found the eigenvalues and eigenvectors for a general square matrix A, the following is always true:



and we can always write:


However, if we want to bring S on the other side (in other words, if we want to carry out an eigen decomposition or a similarity transformation of A as:

 		

S must be invertible, which means that

S must have n independent columns

If this condition is not met, A is not diagonalizable, which means that the diagonal matrix Λ of eigenvalues is not similar to A in any space. It turns out (but we will not offer proof of it) that: 

	if the λ's of A are all different		S is invertible

if some of the λ's of A are the same		S may or may not be invertible

There are many cases in biochemistry (we will encounter some soon) where we want to solve problems of the type: 
uk = Au0

but the meaning of the matrix product (the coupling between the elements in vector u0 by a matrix to produce vector uk) is not immediately obvious. In those cases, it is convenient to move the problem into a space, the eigenvector space, in which the coupling is removed. 

For this purpose we will always follow a 3 step general strategy of working by similarity transformation:

1. represent u0 in the eigenvector basis S 		

2. follow each eigenvector component separately	

3. go back in standard basis				

Notice the conceptual similarity between these three steps and the alternative 3 step solution:

1. find the coordinates uS of u0 in eigenvector space:



2. write u0 as a linear combination of the eigenvectors of A:


3. multiply each eigenvector component by its eigenvalue:



the solution is a linear combination of the 'pure' solutions  : these are the independent normal modes of the system. Notice something very important: the coefficients of the linear combination are unchanged between  and .
Some useful information about eigenvalues and eigenvectors.

While we are not discussing the algorithms used to identify the eigenvalues and eigenvectors of a matrix, it is convenient to remember some of their important properties:

1. The trace (sum of the diagonal elements) of a matrix is the sum of the eigenvalues.

M = randi(10,4)
[S,D] = eig(M)
trace(M)
sum(diag(D))

2. The product of the pivots in the Gaussian elimination of a matrix is equal to the product of the eigenvalues.

 [x,A] = gauss_elim_step_by_step(M,[1 2 3 4]')
prod(diag(A))
prod(diag(D))

3. The determinant of a matrix is the product of the eigenvalues (or equivalently the product of the pivots in Gaussian elimination). Therefore, if the determinant is 0, it means that at least 1 eigenvalue is 0 (there is something in the nullspace), and thus the matrix is not invertible (SINGULAR). The pseudodeterminant of a singular matrix is the product of the eigenvalues different from 0.

det(M)

We recall here some simple alternative formulas to find the determinant of a matrix. For example:


For larger matrices we can use the cofactor formula:



where the signs of the coefficients a, b, c, are determined by the sum of the values of their indices (+ for even, - for odd). For example, for the matrix above the sign matrix is:



However, typically all modern software uses Gaussian elimination or determine the eigenvalues to calculate the determinant.

4. Adding or subtracting a multiple nI of the identity matrix I to a matrix does not change the eigenvectors and adds or subtracts n to all the eigenvalues. 

M2 = M + 0.1*eye(4)
[S2,D2] = eig(M2)
S
S2
diag(D)
diag(D2)

This property is very important, because it is used in the conditioning of non-invertible matrices, by adding or subtracting fractions of I until all the 0 eigenvalues disappear, and the matrix becomes invertible.

5. The eigenvalues of an upper or lower triangular matrix or of a diagonal matrix are the numbers on the diagonal.

M_ut = triu(M)
[S_ut,D_ut] = eig(M_ut)
M_lt = tril(M)
[S_lt,D_lt] = eig(M_lt)
M_diag = diag(diag(M))
[S_diag,D_diag] = eig(M_diag)

6. The eigenvalues of A are the same as the eigenvalues of AT.

eig(M)
eig(M')

7. The eigenvalues of A-1 are the reciprocal (1/λ) of the eigenvalues of A. 

eig(inv(M))
1./eig(M)

8. Since the sum of the eigenvalues is the trace of a matrix, and the trace of A+B  is the sum of the traces of A and B, one might expect that the eigenvalues of A+B are the sum of the eigenvalues of A and B. However, this is normally not the case with some exceptions. If A and B have the same eigenvectors, then the eigenvalues of AB are the same as the eigenvalues of BA. 
S = rand(4)
D1 = diag(rand(4,1))
M1 = S*D1*inv(S)
D2 = diag(rand(4,1))
M2 = S*D2*inv(S)
eig(M1*M2)
eig(M2*M1)
D1+D2
eig(M1+M2)

More generally, if A and B are complex and commute (AB = BA) it means they are hermitian. A hermitian matrix is a self-adjoint matrix, which is the 'complex' equivalent of a symmetric matrix. When we take the transpose of a complex matrix  the sign of the imaginary part changes, and properly we define it as the conjugate transpose or the adjoint: this transposition is represented alternatively as  or as  or  . Thus, a hermitian or self-adjoint matrix is a complex matrix that remains unchanged upon conjugate transposition. In the case of two hermitian matrices that share the same eigenvectors the eigenvalues of (A+B) are the sum of the eigenvalues of A and the eigenvalues of B and the eigenvalues of AB are the product of the eigenvalues of the individual matrices. This is valid also for the 'real' equivalent of hermitian matrices, when A and B are both real, symmetric, and commute.

9. If the eigenvector matrix S of A is invertible, then any power (including negative and fractional powers = roots) of A can be easily calculated as:



Examples:




An important corollary of this property is the calculation of a matrix exponential, which is very important in biochemical applications. If the eigenvector matrix S of A is invertible, then:



We can understand exponentiation to a matrix by looking at the power series representation of :



similarly we get for our matrix exponential:



where I is the identity matrix. Expanding we obtain:









M1 = rand(4)
M1 = M1'*M1
[S,D] = eig(M1)
M1^4
S*D^4/S

notice the difference between the matrix exponential expm and the elementwise exponential of matrix elements exp:

exp(M1)
expm(M1) 
S*expm(D)/S
S*diag(exp(diag(D)))/S

and likewise for any exponentiation of a number to a matrix:

(exp(1))^M1
5^M1
S*diag(5.^diag(D))/S

This result allows us to make some predictions on the outcome of a matrix product that involves powers or exponentiation. For example, if we have the equation: 

uk+1 = Auk

and we wanto to know what happens if we apply the same operation over and over (let's say 100 times) to the result of the previous operation. This is the same as:

u100 = (A ...(A (A (A (A (Au0))))) = A100u0

since	 	 it follows that:



Likewise for the case in which the matrix is the exponent, since  we have:



10. If A is symmetric (AT = A) all eigenvalues are real numbers and all the eigenvectors can be chosen as orthogonal . 

M3 = rand(4)
M3 = M3*M3'
M3 = M3'*M3
[S,D] = eig(M3)
S'*S
S*S'
S*D*S'

In this case we can write S as Q, the letter typically used to represent an orthogonal matrix: this is a square matrix with all columns as unit vectors perpendicular to each other such that QT = Q-1, and QTQ = QQT = I. 


A matrix (real or complex) that commutes with its transpose is called a normal matrix: thus, if ATA = AAT or more generally, if A*A = AA*, where A* is the conjugate transpose or Hermitian transpose or adjoint of the complex matrix A obtained by taking the transpose and then the complex conjugate (i.e., negating the imaginary parts but not the real part), then A is normal. 

The complex equivalent of an orthogonal matrix Q is a Unitary matrix U for which the following holds:


Clearly, orthogonal Q and unitary matrices U are normal. If A is a normal matrix, then it is always true that there exist a diagonal matrix  and a unitary matrix U such that:


This is called the spectral theorem, which states that:

any normal matrix is always diagonalizable by a unitary matrix.

 
11. If A is antisymmetric (AT = -A), also called skewsymmetric, but not orthogonal, all eigenvalues are imaginary numbers, and the eigenvectors are not orthogonal.

M3 = rand(4)
M3 = triu(M3)-triu(M3)'+diag(diag(M3))
[S,D] = eig(M3)
S'*S
S*S'

12. If A is orthogonal (Q), then all the eigenvectors can be chosen as orthogonal. 

Q1 = [cos(pi/2) sin(pi/2) 0;...
    -sin(pi/2) cos(pi/2) 0;...
    0 0 1]
or
Q1 = [1 0 0;...
      0 cos(pi/2) sin(pi/2) ;...
      0 -sin(pi/2) cos(pi/2)]
[S,D] = eig(Q1)
 
S'*S
S*S'

From the 3 properties above it follows that the eigen decomposition 



of a symmetric or orthogonal matrix is always possible.

In all other cases only the decomposition 


is possible.

13. If all the eigenvalues of a symmetric matrix A are >0 , A is called positive definite. An important property of positive definite matrices is that the product:



In many applications this number  or more often  represents the energy of the system, which cannot be negative. As a consequence, if A and B are both positive definite then C = A+B is also positive definite because the sum of two positive energies is a positive energy.

If A is positive definite (A is invertible) it is always true that A = RTR, where R is a matrix with independent columns (R is invertible). Conversely, if R is a matrix with independent columns, RTR is positive definite, and therefore, by definition, invertible.

14. If the eigenvalues of A are ≥ 0 , A is positive semidefinite. In this case, at least 1 eigenvalue is always 0 (the energy in the corresponding eigenvector is also 0), and thus the matrix is singular. An important property of positive semidefinite matrices is that the product:


If R is a matrix with some dependent columns, RTR is positive semidefinite, and therefore, by definition, singular. Conversely, if a matrix is positive semidefinite, it can be factorized as RTR, in which R has some dependent columns.

15. If the eigenvalues of A are both ≥ 0 and < 0, A is indefinite.



PRACTICE

[bookmark: _GoBack]1. Using known properties of the spectral decomposition of matrices, find the eigenvalues of the following matrices , .

2. We know that for every eigenvector x of A the following equality is true:


From which we derive:



Clearly vector x must be in the null space of the matrix  and therefore this matrix is singular (non invertible); we have also learned that if a matrix is singular the product of its eigenvalues is 0, and therefore the value of the determinant is also 0: 



This gives us a way of finding the eigenvalues of a simple matrix; for example consider the matrix:



The final polynomial in  of degree n is called the 'characteristic polynomial': we can use the formula for quadratic roots to find the two values of :



A = [3 1;1 3]
syms x
charpoly(sym(A),x)
ch_poly = charpoly(A)
D = roots(double(ch_poly))

Now that we know the eigenvalues 1 and 2 we can substitute them back in the equation  to find the eigenvectors (=null space of the equation). Doing the substitution one at a time we get:

1 = 2 	

2 = 4 	

S1 = null(A-D(1)*eye(2)) , S2 = null(A-D(2)*eye(2))

Thus, the two eigenpairs are: 1 = 2, x1 =   and 2 = 4, x2 =  . Using this example as guidance, find the eigenvectors of A:


IMPORTANT: this simple algorithm to find the eigenvalues and eigenvectors of a matrix is based on the assumption that we have a method to find a basis for the nullspace of a singular matrix. This task is accomplished quite easily for small matrices by Gaussian elimination. For example, let’s find the basis for the nullspace N(A) of A:



A = [1 1 2 3 1 1 1;2 2 8 10 3 2 1;3 3 10 13 1 2 3]
[m,n] = size(A);
r = rank(A);
rref(sym(A))

A has rank 3, and its row reduced echelon matrix is: 



pivot columns
free columns

We know there are 4 vectors in the nullspace of A. We are going to set up 4 x vectors (these are the 4 special solutions of N(A)), each containing 3 pivot variables (x1 x3 x5) and 4 free variables (x2 x4 x6 x7), corresponding to the pivot columns and the free columns of the row reduced echelon matrix. The pivot columns correspond to the independent columns of A, while the free columns correspond to the dependent columns of A. Since each dependent column can be derived as a linear combination of the independent columns, in each special solution, in turn, a free variable is set to 1 (special choice), and the other 3 free variables are set to 0. Based on the choice of free variables, the values of the pivot variables are automatically determined by solving for those variables by Gaussian elimination. This corresponds to finding the linear combination of the independent columns of A that give the chosen dependent column and subtracting that combination from the dependent column. In practice, for each special solution vector, the values of the 3 pivot variables (the combination of independent columns) are read directly from the free column that provides the special choice, with the sign changed:

x1 x3 x5 for all nullspace vectors are read from the rref with the negative sign:

template for all special solutions = [x1 x2 x3 x4 x5 x6 x7] 
template for s1 = [x1 1 x3 0 x5 0 0]    [-1 1 -0 0 -0 0 0]	
template for s2 = [x1 0 x3 1 x5 0 0]    [-1 0 -1 1 -0 0 0]
template for s3 = [x1 0 x3 0 x5 1 0]    [-5/6 0 1/12 0 -1/3 1 0]
template for s4 = [x1 0 x3 0 x5 0 1]    [-5/3 0 1/6 0 1/3 0 1]
 
Alternatively, solve for X in:

       ,   

   ,   

Bringing all together:


		  independent columns			       dependent columns

x_ind = [1:7];
[~,pivot_ind] = rref(A);
free_ind = setdiff(x_ind,pivot_ind);
npivots = length(pivot_ind);
nfree = length(free_ind);
Ap = -A(:,pivot_ind);
Af = A(:,free_ind);
X = Ap\Af;
I = eye(nfree);
NA = zeros(n,n-r);
for i = 1:nfree
    NA(pivot_ind,i) = X(:,i);
    NA(free_ind,i) = I(:,i);
end
NA

The special solutions can be easily orthogonalized by the Gram-Schmidt method. The first solution s1 is accepted. We determine the projection p2 of s2 onto s1 and we subtract from s2: the difference vector is orthogonal to s1. We determine the projection p31 and p32 of s3 onto s1 and s2 and we subtract from s3: the difference vector is orthogonal to s1 and s2. The basic idea is to subtract from every new vector its projections in the directions already defined. At the end we convert everything into unit vectors. 

Gram-Schmidt
s1 = NA(:,1);s2 = NA(:,2);s1 = NA(:,3);s1 = NA(:,4);
s2 = s2-s1*inv(s1'*s1)*s1'*s2
s3 = s3-[s1 s2]*inv([s1 s2]'*[s1 s2])*[s1 s2]'*s3
s4 = s4-[s1 s2 s3]*inv([s1 s2 s3]'*[s1 s2 s3])*[s1 s2 s3]'*s4
 
s1 = s1/norm(s1); s2 = s2/norm(s2); s3 = s3/norm(s3); s4 = s4/norm(s4) 
oNA = [s1 s2 s3 s4]
oNA'*oNA
A*oNA


3. Find the eigenvalues, the eigenvectors, and the inverse of A:



Notice that the two matrices that sum up to A are both symmetric, real, and also commute. Recalling that if a matrix has rank n there can't be more than n eigenvalues different from 0, try to solve the problem without using MATLAB; however, if using MATLAB, it is convenient to convert the matrix A into a symbolic matrix. For example:

A1 = eye(4)*5
A2 = -ones(4)
A = A1 + A2
A = sym(A)


4. True or false: if the columns of S (eigenvectors of A) are linearly independent, then:
a) A is invertible
b) A is diagonalizable
c) S is invertible
d) S is diagonalizable


5. We know the eigenvalues of AT are the same as the eigenvalue of A. 

a. What are the eigenvectors y of AT such that ATy = y? These are often called the left eigenvectors of A (as opposed to the standard right eigenvectors) because they fulfill the matrix equation yTA = yT.

b. What is the relationship between the left and the right eigenvectors if A is symmetric?


6. Which of the four subspaces of a projection matrix contains eigenvectors with  = 1? Which subspace contains eigenvectors with  = 0? Can you say if a projection matrix can be diagonalized? 
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