Information Theory.

Information theory (a field of science started by Claude Shannon seminal article ‘A mathematical Theory of Communication’, 1948) provides a mathematical definition of information and describes how much information can be communicated between different parts of a system.

For example, let’s imagine that a colleague is doing an experiment in a distant laboratory and wants to inform us of the outcome. Both we and our distant colleague know that there are 8 equally possible outcomes, which we have agreed to list as Result_A, Result_B,…, Result_H. Before the experiment is conducted we know the result could be any of these 8, but after the experiment is completed, only one of the 8 possible results is realized. 

We ask the following key question: how much information does our colleague need to send us via some communication channel so that we know the outcome of the experiment?

Information theory defines 1 bit of Shannon information as the amount of information necessary to choose between 2 equally probable outcomes.

Based on this definition, our colleague needs to send us 3 bits of information. We can rationalize this result by observing that in order to choose 1 out of 8 results we have to make 3 consecutive choices between 2 equally probable outcomes that divide the field by half:

[image: ]If our colleague wants to tell us that the experiment outcome was Result_C, based on the agreement that a 0 indicates that we must choose the left path at each bifurcation and a 1 indicates we must choose the right path, he will send us the 3 numbers 010.  Each of the 3 numbers provides 1 bit of information, that is the amount of information required to make a choice between two equally probable outcomes. For example, the 1st 0 (from the left) in 010 forces a choice between 2 equally probable groups of results, [Result_A Result_B Result_C Result_D] and [Result_E Result_F Result_G Result_H].

This example also clarifies the historical origin of the word used for the unit of information, as the word bit is a contraction of binary digit, a variable that can assume only two values, 0 and 1. The 3 digits associated with each result are in fact the binary (base 2) representations of the smallest 8 possible integers (starting from 0 and ending with 7) that we can associate with a position in the list: for example, the binary representation of 5 is 101 and that of 7 is 111.  We recall here that a single principle allows the representation of any number in base 10 or base 2 math (or any other base, i.e. 8 or 16). As an example, the following table shows the rational behind the decimal and binary representation of the base 10 number 1013:

	Base 10
	109
	108
	107
	106
	105
	104
	103=1000
	102=100
	101=10
	100=1
	Total

	Decimal
	
	
	
	
	
	
	1
	0
	1
	3
	

	Sum
	
	
	
	
	
	
	1000 +
	0 +
	10 +
	3 =
	1013

	Base 2
	29=512
	28=264
	27=128
	26=64
	25=32
	24=16
	23=8
	22=4
	21=2
	20=1
	Total

	Binary
	1
	1
	1
	1
	1
	1
	0
	1
	0
	1
	

	Sum
	512 +
	264 +
	128 +
	64 +
	32 +
	16 +
	0 +
	4 +
	0 +
	1 =
	1013



Decimal_1013 = [1 0 1 3]*(10.^[3:-1:0])'
Binary_1013 = [1 1 1 1 1 1 0 1 0 1]*(2.^[9:-1:0])'

Just like 1 bit of information allows the choice between 21 = 2 equally probable outcomes, so 2 bits allow a choice between 22 = 4 equally probably outcomes, 3 bits allow a choice between 23 = 8 equally probably outcomes, and …
 
n bits of information allow the choice between 2n = m equally probable outcomes.

By the same token, since the base 2 logarithm of a number m is the power of 2 that yields m, then …

n = log2(m) is the number of bits of information necessary to choose between m equally probable outcomes.
  

Let’s look again at what happens when our colleague sends us the information about the experiment outcome. Each result (e.g., Result_A, possibly a complex set of data, an image, or other) is represented by a symbol si which is the value of a random variable S taken out of an alphabet A = {s1,s2,…,s8}. We can consider this random variable as a function S(outcome) that maps an outcome (e.g., Result_A) to a symbol s (e.g., a number, s1 = 0, a letter, s1 = a, other, s1 = ):


	Transmitter side
	
	Receiver side

	
Outcome

	Random variable S(outcome)
	
Symbol

	Encoder
	
Codeword
Input  
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	Decoder
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	Random variable S(outcome)
	
Outcome


	Result_A
	
	s1 
	
	x1 = 000
	
	y1 = 000
	
	s1
	
	Result_A
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	s2 
	
	x2 = 001
	
	y2 = 001
	
	s2
	
	Result_B

	Result_C
	
	s3 
	
	x3 = 010
	
	y3 = 010
	
	s3
	
	Result_C

	Result_D
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	x4 = 011
	
	y4 = 011
	
	s4
	
	Result_D

	Result_E
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	x5 = 100
	
	y5 = 100
	
	s5
	
	Result_E

	Result_F
	
	s6 
	
	x6 = 101
	
	y6 = 101
	
	s6
	
	Result_F

	Result_G
	
	s7 
	
	x7 = 110
	
	y7 = 110
	
	s7
	
	Result_G

	Result_H
	
	s8 
	
	x8 = 111
	
	y8 = 111
	
	s8
	
	Result_H



The fidelity of the transmission is based on three factors:
Outcome
Symbol
Result_A
s1 
Result_B
s2 
Result_C
s3 
Result_D
s4 
Result_E
s5 
Result_F
s6 
Result_G
s7 
Result_H
s8 


1. Both the transmitter and receiver share a lookup table relating every possible outcome to a symbol and viceversa:

2. Both the encoder and the decoder share a common codebook (or simply, a code), allowing the conversion of a symbol s (or group of symbols) into an input codeword x, and of an output codeword y into a symbol s (or group of symbols).

Codeword
Symbol
Codeword
y1 = 000
s1 
x1 = 000
y2 = 001
s2 
x2 = 001
y3 = 010
s3 
x3 = 010
y4 = 011
s4 
x4 = 011
y5 = 100
s5 
x5 = 100
y6 = 101
s6 
x6 = 101
y7 = 110
s7 
x7 = 110
y8 = 111
s8 
x8 = 111


A message s is a sequence of symbols s = (s1, s2, …, sn). As long as the same code is used by the encoder and decoder, there is no strict need for a 1:1 correspondence between symbols and codewords: thus, a group of symbols (i.e., s1, s2, s5) could be converted by an encoder/decoder into a single codeword (i.e., 001).



3. The outcome symbols on the transmitter and receiver side must be the same: this may occur either because the channel input and output are identical (i.e., if we have a noiseless channel), or because the decoder corrects possible errors occurring during the transmission (i.e., if we have a noisy channel).
[image: ]

Thus, if we receive from our distant colleague through a noiseless communication channel the codeword 010, our decoder converts this output to symbol s3, which tells us that Result_C (whatever that might be) was the result of the experiment.  Since the channel output allows us to choose between 8 different equally probable results, it mean that the codeword 010 provides us with 3 bits of information; in this case each binary digit carries 1 bit of information.

However, one should keep in mind that besides the historical origin of the word bit, a binary digit does not always correspond to a bit of information. We can understand this concept by looking at the outcome of flipping a large number of times a perfect coin (equal chance of head or tail) and also different coins that have been bent to different degrees leading to a different probability of getting head versus tail.  Let’s represent head with 1 and tail with 0, and let’s look for example at what we learn when a 1 occurs. Each time we flip a perfect coin and the result is 1 (or 0), we know that one of two equally possible outcomes has realized, and we have learned 1 bit of information. If the coin is bent so heavily that in practice the expected outcome is always 1, then each time we flip the coin and the actual result is 1, that result does not surprise us, and we learn nothing. On the other hand, if the coin is bent in such a way that a 1 is possible, but unlikely, and 1 actually occurs, then we are very surprised: intuitively we realize that in this case 1 carries a lot of information because it tells us that an unlikely event occurred.  This is the fundamental idea of information theory: information is a measure of our surprise: the difference between what we expect and what actually happens!

[image: ]Based on this reasoning, we derive that the amount of Shannon information  associated with each event  (i.e., x = 1 or x = 0) is a function of the reciprocal of the probability of that event. Accordingly, we define  in bits as:



p = [0.01:0.01:1]';
h = log2(1./p);
plot(p,h,'-r')
xlabel('p(x)'),ylabel('Shannon information, h')
xlim([0 1.01]),ylim([-0.1 7]), grid on, box on

Notice that  is appropriately defined as  to account for the fact that information cannot be negative, and that if an event has unit probability we learn nothing when that event occurs. Clearly, if we don’t know a priori the type of coin we are using, and what is the probability of a given outcome (head = 1 or tail = 0), then we need to flip the coin a very large number of times, and count the occurrences of 1s and 0s in order to derive from the observed frequencies an estimate of the probabilities. For example, if in 1000 tosses we get 800 times a head (1) and 200 times a tail (0), then an estimate of the Shannon information of each head or tail outcome is:




h_head = log2(1/0.8)
h_tail = log2(1/0.2)

However, if a random variable X can assume multiple values (i.e., x1 = 1, x2 = 0) in most cases we are interested in the average Shannon information of an infinite set (or, in practice, a very large set) of the possible values of that variable, rather than the information of a particular outcome. In other words, we are interested in the average information of the variable X, as defined by the probability distribution p(X) of its possible values. 

The average information (surprise) of a random variable X with probability distribution p(X) of discrete values x, is called the entropy of X, H(X).

For example, if we throw a 6-sided die n times (with n very large) to produce the sequence of n independent outcomes x1, x2, …, xn, then the entropy of the die is approximately:
 


where an estimate of the true probability, , is given by the observed frequency, , in the entire sequence of each of 6 possible outcomes  at each coin toss:

s = ['A' '3' 'C' 'f' '2' 'w'];
tobs = 1000;
ind = randi(6,[tobs,1]);
X = s(ind);

fCAC3Cff2A3AwC3ffCfCwff3ffAAfCCw2AffACCCAf3C2Aff23w3322AAwCfCwfCA3ffwCC2f...

nobs = accumarray(ind,1);
p = nobs/tobs;
px = p(ind); 
H = mean(log2(1./px))
H_theor = log2(6) % Theoretical value of the entropy of a 6-sided dye

Likewise, we can calculate the entropy of bent coins, considered here as random variables, that have different levels of bias, by flipping each coin, for example, a thousand times. Clearly, the result of each flip is independent from that of any other flip:

Number of flips:
nflips = 1000;
 
Bias:
bias = [0.01:0.01:0.99];
nbias = length(bias);
 
Observed outcome:
binary_mat = zeros(nflips,nbias);
for i = 1:nbias
     binary_mat(:,i) = binornd(1,bias(i),[1000,1]);
end
 
Observed frequencies of heads and tails:
fr_1 = sum(binary_mat)/nflips;
fr_0 = 1-fr_1;
 
Precalculated values of log2(1/frequencies):
log_fr1 = log2(1./fr_1);
log_fr0 = log2(1./fr_0);
 
Entropy:
for i = 1:nbias
    sum_h0(i) = sum((binary_mat(:,i) == 0))*log_fr0(i);
    sum_h1(i) = sum((binary_mat(:,i) == 1))*log_fr1(i);
    H(i) = (sum_h0(i) + sum_h1(i))/nflips;
end
 
Coins_Entropy_1 = figure;
plot(fr_1,H,'Marker','.','MarkerSize',20,'MarkerFaceColor','r','MarkerEdgeColor','r');
ylim([0 1.1])
xlabel('coin bias, observed frequency of heads'),ylabel('Entropy, H(bits)')
grid on, box on
title('Entropy of biased coins')

[image: ]We notice here that the above definition of entropy for a sequence of i independent outcomes x1, x2, …, xn,: 


is entirely equivalent to saying that, if the outcomes of  are drawn from i different and independent symbols , an estimate of the entropy of the sequence is:



H_fr = sum([fr_0.*log_fr0;fr_1.*log_fr1]);
Coins_Entropy_2 = figure;
plot(fr_1,H,'Marker','.','MarkerSize',20,'MarkerFaceColor','r','MarkerEdgeColor','r');
ylim([0 1.1])
xlabel('coin bias, observed frequency of heads'),ylabel('Entropy, H(bits)')
grid on, box on
title('Entropy of biased coins')
 
Furthermore, we can substitute observed frequencies with probabilities, if these are known a priori:



H_pr = -sum([(1-bias).*log2(1-bias);bias.*log2(bias)]);
Coins_Entropy_3 = figure;
plot(bias,H_pr,'Marker','.','MarkerSize',20,'MarkerFaceColor','r','MarkerEdgeColor','r');
ylim([0 1.1])
xlabel('coin bias, probability of heads'),ylabel('Entropy, H(bits)')
grid on, box on
title('Entropy of biased coins')

[image: ]
We see here how the average amount of information (surprise) of a coin per coin flip, its entropy H, depends on the relative probabilities of the different possible outcomes. A perfectly unbiased coin, with equal probability of occurrence of a head or tail has the largest average amount of information, 1 bit, per coin flip.   In contrast, a biased coin with, for example, a probability of heads of 0.8, has a lower average amount of information per flip, 0.69 bits, despite producing some flips (those with tail) that carry 2.43 bits of information.


The determination of the entropy of bent coins shows that if we have a binary random variable X, with possible outcomes 0 and 1, the highest possible entropy H(X) (average Shannon information of an outcome) in bits/outcome is 1, provided the two outcomes have the same probability p = ½ (uniform distribution). It follows that if we transmit messages with an encoder/noiseless channel that uses a binary code the highest possible information content is 1 bit of information/binary digit (0 or 1). 

This result is valid for any discrete variable X regardless of the number and/or type of symbols in the variable alphabet. For example, consider a variable X whose alphabet consists of the following symbols:

X = {2 A 3 g f 8 C 7 5 w}

We can derive an acceptable numerical proof that the uniform distribution of these symbols is the distribution with the highest entropy by drawing 1,000,000 different realizations of X each containing, for example, 8000 observations and calculating the entropy of each X. Then, we can compare those entropies with the entropy of a uniform distribution in which each xi value of X appears the same number of times. 

ntrial = 1000000;
H = zeros(ntrial,1);
i = 0;
while i < ntrial
i = i + 1;
f = randi(10,10,1);
f = f/sum(f);
H(i) = -sum(f.*log2(f));
end

H_rnd = max(H); f_unif = ones(1,10)/10;
H_unif = -sum(f_unif.*log2(f_unif));

his = histogram(H)
his.EdgeColor = [0 0 1];his.FaceColor = [0 0 1]
hold on; grid on; plot([H_unif H_unif],…
[image: ][0 max(his.Values)],'-r', 'LineWidth', 3)
vline(H_unif,{'-r', 'LineWidth', 3})
legend('H random distr.',…
'H uniform distr.','Location','Best') 
xlabel('Entropy, H');
ylabel('No. of X trial vectors')


We notice here that the maximum entropy of X (H_unif) corresponds to the log of the number of possible outcomes (in this case 10):

maxH = log2(10)
m = 2^maxH

More generally the entropy H(X) of a random variable X is a measure of the average information carried by an observation of that variable: that is, on average, an observation of X has the amount of information necessary to distinguish between m unique equally probable symbols:





For example, the maximum entropy of a 6-sided die (m=6 symbols) is:



and if the die is fair, the probability of each outcome is:
 


m = 6
H6 = log2(m)
m = 2^H6 
p_side = 2^(-H6)

It follows that doubling the number of outcomes of a variable only adds 1 bit to its maximum entropy:


m = 12
H12 = log2(m)

Furthermore, the entropy of a variable depends exclusively on the number of possible symbols and their probability distribution, and not on the symbols themselves. Thus, a 6-sided die that has 11,12,13,14,15,16 or A,B,C,D,E,F on its sides has the same entropy of a traditional die.

Finally, it is important to recognize the dual meaning of entropy as both information and uncertainty: when a random variable X has high entropy, its outcome has high uncertainty because on average the variable behaves as it has a number  of equally possible outcomes. On the other hand, an outcome of X carries on average  bits of information, sufficient to distinguish between  different symbols.

Another example can be useful to understand the meaning of the entropy of a random variable, and how the symbol distribution affects it. Consider the case of a string of symbols picked randomly to form a 'message' X:
s = ['A' 'B' 'C' 'D' 'E' 'F' 'G' 'H']
ns = length(s)
tobs = 80
ind = randi(8,[tobs,1]);
X = s(ind);
nobs = accumarray(ind,1);
 
Frequency (probability) of each symbol.
p = nobs/tobs;
 
Entropy of X.
px = p(ind)    
H = sum(log2(1./px))/tobs
% or
H = sum(p.*log2(1./p))  

H = 2.9305 

Now consider a UNIFORM distribution of the same symbols. xobs is now the number of times each symbol appears in the message:
s1 = ['A' 'B' 'C' 'D' 'E' 'F' 'G' 'H']
ns1 = length(s)
tobs = 80
xobs1 = tobs/ns1
 
permutations1 = perms([1:8]);
nperms1 = size(permutations1,1);
ind1 = randi(nperms1,10,1)
X1ind = permutations1(ind1,:)
X1ind = X1ind(:)
nobs1 = accumarray(X1ind,1);
 
Frequency (probability) of each symbol
p1 = nobs1/tobs;
 
Entropy:
H1 = sum(p1.*log2(1./p1))  
 
Which is exactly what we expected as:
H1 = log2(ns1)
 
H1 = 3

Finally, consider another UNIFORM distribution of the same symbols plus two new ones. The total length of the message does not change, and thus xobs, the number of times each symbol appears in the message, is smaller (8 instead of 10):
s2 = ['A' 'B' 'C' 'D' 'E' 'F' 'G' 'H' 'I' 'J']
ns2 = length(s2)
tobs = 80
xobs2 = tobs/ns2
 
permutations2 = perms([1:10]);
nperms2 = size(permutations2,1);
ind2 = randi(nperms2,8,1)
X2ind = permutations2(ind2,:)
X2ind = X2ind(:)
nobs2 = accumarray(X2ind,1);
 
Frequency (probability) of each symbol
p2 = nobs2/tobs;
 
Entropy:
H2 = sum(p2.*log2(1./p2))  
 
Which is exactly what we expected as:
H2 = log2(ns2)
 
H2 = 3.3219
 
In conclusion two messages, X1 and X2 have the same length of 80 characters:

X1 = GHHBGGECFGBGEEEECFDAHBGDFAFBEHAEDAHDHHBCFACFCCAGGBDDAGABGAHECCBHDFBEADEFFCBHDDCF

X2 = IIGAGBJGFBIDHECDGDABCGIBJECGJFFAHADHDAEHAJJEEHBIDCHCBDDEEGBJFIGJBFFIIJACCHEFACHF

But each time X1 is observed it appears as 1 of 8 equally probable symbols, while each time X2 is observed it appears as 1 of 10 equally probable symbols. Thus, the entropy of variable X2 is H2 = log2(10) = 3.32 bits, larger than the entropy of variable X1, H1 = log2(8) = 3.0 bits. In other words, each time we see a realization of X2 as 1 of 10 equally probable letters we learn 3.32 bits of information, while each time we see a realization of X1 as 1 of 8 equally probable letters we learn only 3.0 bits of information. When receiving a message, the average amount of information we would get each time a letter of the message is revealed to us would be less if the letters were not equally probable.

Information Entropy and Thermodynamic Entropy.
Historically, the average amount of information of a random variable  was defined as the Information Entropy because of the similarity between its mathematical expression:



and that of Boltzmann Thermodynamic Entropy:



where is the Boltzmann constant (just a scaling constant), and  is the number of equally probable microstates of the system. Thus, the entropy of a macrostate (a state that from the outside looks always in a certain way) is the log of the number of equally probable microstates that can give origin to that same macrostate.

For example, consider the possible macrostates produced by microstates associated with 4 particles, two of which (1 and 2) have low velocity and produce a cold environment and two of which (3 and 4) have high velocity and produce a hot environment. Now, imagine that for each row the two particles on the left occupy the left half of a chamber, and the two particles on the right occupy the right half of a chamber. The following are all the possible equally probable microstates:
 
micro = perms([1 2 3 4])
 
4     3     2     1
4     3     1     2
4     2     3     1
4     2     1     3
4     1     3     2
4     1     2     3
3     4     2     1
3     4     1     2
3     2     4     1
3     2     1     4
3     1     4     2
3     1     2     4
2     4     3     1
2     4     1     3
2     3     4     1
2     3     1     4
2     1     4     3
2     1     3     4
1     4     3     2
1     4     2     3
1     3     4     2
1     3     2     4
1     2     4     3
1     2     3     4
     
Now we make particle 1 and 2 identical (because they have the same low velocity) and also 3 and 4 identical (because they have the same high velocity)
micro(micro == 2) = 1
unique(micro,'rows')
micro(micro == 4) = 3
unique(micro,'rows')

Next, we combine rows (microstates) that have identical symbols in just one row: as a consequence each new row derives from merging 4 microstates. If we draw some lines between columns and rows we can recognize 3 macrostates: two in which the right or left side of the chamber is 'hot' or 'cold', respectively, and one in which both sides of the chamber have the same temperature. Thus, macrostate I and III are each produced by 4 different microstates, while macrostate II is produced by 16 different microstates. 

 
1     1   |   3     3      Macrostate I
 ---------------------
1     3   |   1     3
1     3   |   3     1      Macrostate II
3     1   |   1     3
3     1   |   3     1
---------------------
3     3   |   1     1      Macrostate III
     
Since all the microstates are equally probable, macrostate II which can be produced by the larger number of microstates:



is more probable than macrostates I or II, which can be produced by a smaller number of microstates:



That is why in a room the temperature will tend to be uniform everywhere (maximum entropy), rather than being hot in half of the room and cold in the other half (low entropy).
The noiseless channel.
If a noiseless channel transfers k binary digits/second we define this value as the channel capacity, C (assuming a maximum information content of 1 bit of information/binary digit):



If a message s = (s1, s2, s3,…) has an Entropy of H(s) = n bits/symbol, that message can be transferred at a maximal communication rate, R of:





For example, if a message s is a composition of m=6 types of symbols, each having the same frequency (~probability), then the input entropy is:

H(s) = log2 m = log2 6 = 2.585 bits/symbol

Assuming a transfer rate the maximal communication rate with these symbols is therefore:





However, it is important to understand that when the encoder converts each symbol in the message into a binary codeword x, the actual length L(x) of the codeword can only be an integer number of binary digits. For example, if we use codewords of 3 binary digits, L(x) = 3, for each symbol, then our coding efficiency E is:


m = 6;
H6 = log2(m);
L6 = ceil(H6);
E6 = H6/L6;

which for a binary code is significantly less than the highest possible information content of 1 bit of information/binary digit. 

In that case, the effective communication rate is:








However, if we were to represent the original message with new symbols (the inputs to the encoder) obtained by combining 3 of the original symbols in any order, then the total number of new symbols becomes mnew = 63 = 216. Therefore,

H() = log2 mnew = log2 216 = 7.7549 bits/symbol

If we use codewords of 8 binary digits, L(x) = 8, for each input symbol, then our coding efficiency E is:



which for a binary code is slightly less than the highest possible information content of 1 bit of information/binary digit. Recalling that each of the new inputs corresponds to 3 of the original symbols, we obtain the actual communication rate:







which is very close to the maximum communication rate possible for the original symbols: 





Optimal encoding
A = {'S' '1' 'g' '23' 'T' '7'}
A_ind = 1:6;
ind = randi(6,[1,9000]);
M = A(ind);
nm = length(M);
 
Message entropy and total information content
H_M = Entropy(ind')
Info_M = H_M*nm
 
Encoding based on 3 bits per symbol
Cb_A = A';
n_Cb = size(Cb_A,1);
Cb_b = dec2bin([1:6]');
Lx = ceil(log2(n_Cb));
 
M_b_1 = [];
b_ind_1 = zeros(nm,1);
for i = 1:nm
    s = M(i);
    b_ind = find(strcmp(Cb_A,s));
    M_b_1 = [M_b_1 Cb_b(b_ind,:)];
end
 
Encoded message entropy and total information content
p_ones = sum(M_b_1 == '1',2)/length(M_b_1);
p_zeros = 1 - p_ones;
H_1 = - [p_zeros p_ones]*[log2(p_zeros) log2(p_ones)]'
Info = H*length(M_b_1)
H_1_codewords = Entropy(b_ind_1)

Encoding based on grouping symbols by 3 and using 8 bit per new symbol
Cb_ind = unique(randi(6,[10000,3]),'rows');
n_Cb = size(Cb_ind,1);
Lx = ceil(log2(n_Cb));
Cb_A = A(Cb_ind);
Cb_A_string = cell(1,n_Cb);
for i = 1:n_Cb
    Cb_A_string{i} = [Cb_A{i,1} Cb_A{i,2} Cb_A{i,3}];
end
Cb_b = dec2bin([1:216]');
 
M_b_2 = [];
s_start = 0;
s_end = 0;
b_ind_2 = zeros(nm/3,1);
for i = 1:nm/3
    s_start = s_start + 1;
    s_end = s_end + 3;
    s = M(s_start:s_end);
    s_string = [s{1} s{2} s{3}];
    b_ind = find(strcmp(Cb_A_string,s_string));
    M_b_2 = [M_b_2 Cb_b(b_ind,:)];
end
 
Encoded message entropy and total information content
p_ones = sum(M_b_2 == '1',2)/length(M_b_2);
p_zeros = 1 - p_ones;
H_2 = - [p_zeros p_ones]*[log2(p_zeros) log2(p_ones)]'
Info_2 = H_2*length(M_b_2)
H_2_codewords = Entropy(b_ind_2)



It is important to realize that this result applies to all messages regardless of their size and number of different symbols. As another example, consider a message s composed of m=7 types of symbols, each having the same frequency. Its entropy is:

H(s) = log2 m = log2 7 = 2.8074 bits/symbol

If we use codewords of 3 binary digits, L(x) = 3, then our coding efficiency E is:



which for a binary code is already close to the highest possible information content of 1 bit of information/binary digit. 

Also in this case it is possible to improve the coding efficiency by combining together symbols s into a single output x. However, combining 3 symbols is not sufficient, and a dramatic improvement is observed only when at least 6 symbols are combined into a new symbol. In this case, the total number of codewords in the codebook becomes mnew = 76 = 117649!

m = 7;
H7 = log2(m)
L7 = ceil(H7)
E7 = H7/L7

In principle, we could drive the coding efficiency all the way up to the theoretical limit of 1 corresponding to the maximum transmission rate of C/H(s), but this would require combining 26 symbols into 1 input and the new codebook would contain 9.3875e+21 codewords! Of course, this may not be possible if the message is not long enough.

Channel Capacity in binary digits/second
C = 1;
Number of combined symbols
N = 40;
 
for i = 1:N
    Total number of inputs produced by combining i symbols. 
    m_comb(i) = m^i;
    Entropy of the distribution of inputs.
    H_comb(i) = log2(m_comb(i));
    Integer number of binary digits required to transmit each input.
    L_comb(i) = ceil(H_comb(i));
    Coding efficiency
    E_comb(i) = H_comb(i)/L_comb(i);
    Transmission rate
    R_comb(i) = E_comb(i)/H7;
end

Coding_Efficiency = figure;
set(Coding_Efficiency,'Units','normalized','Position',[0.2 0.2 0.5 0.3],...
    'Name','Coding Efficiency'),clf
subplot(1,3,1)
plot([1:N],E_comb,'-',[1:N],E_comb,'or')
xlabel('No. of combined symbols in each input')
ylabel('Coding Efficiency, E (bits/binary digit)')
grid on, box on
subplot(1,3,2)
semilogy([1:N],m_comb,'-',[1:N],m_comb,'or')
xlabel('No. of combined symbols in each input')
ylabel('Total number of inputs, m = 7^N^C^O^M^B')
grid on, box on
subplot(1,3,3)
plot([1:N],R_comb,'-',[1:N],R_comb,'or')
hline([C/H7 C/H7]);
xlabel('No. of combined symbols in each input')
ylabel('Trasmission rate, E/H(s) (symbols/s)')
grid on, box on


[image: ]

We can generalize the conclusion derived from this example:


If each independent and equally probable symbol in a message carries an amount of information equal to a non-integer number of bits, then it is always possible to obtain a more efficient encoding by combining several symbols s into a single codeword from an expanded codebook.


This result exemplifies Shannon’s Fundamental Theorem of Noiseless Channels (often referred to as the Shannon’s source coding theorem):

If a source of symbols has an entropy H (bits/symbol) and a noiseless channel has a capacity C (bits/s), it is possible to encode the source in order to transmit symbols over the channel at an average rate infinitesimaly close to C/H, but not higher than C/H.  

In other words, the capacity C of the transmitting channel cannot be exceeded, but it can be approached by a particular distribution p(X) of codewords xi that:


1. maximizes the entropy H(X), with the uniform distribution of all codewords xi being the Maximum Entropy Distribution of X. 

2. minimizes the total number of binary digits transferred through the channel.


In fact, going back to our example of the message composed of 6 different symbols:

Encoding as 1 symbol/codeword and 3 binary digits/codeword:
H_1 = - [p_zeros p_ones]*[log2(p_zeros) log2(p_ones)]'
Info_1 = H_1*length(M_b_1)
H_1_codewords = Entropy(b_ind_1)

Encoding as 3 symbols/codeword and 8 binary digits/codeword:
H_2 = - [p_zeros p_ones]*[log2(p_zeros) log2(p_ones)]'
Info_2 = H_2*length(M_b_2)
H_2_codewords = Entropy(b_ind_2)

Coding efficiency
E_1 = Info_M/Info_1
E_2 = Info_M/Info_2

We find that:

1. the entropy of the channel input composed of 3 binary digits codewords is 2.5847 while the entropy of the channel input composed of 8 binary digits codewords is 7.7006

2. the length of the message encoded with 1 symbol/codeword and 3 binary digits/codeword is 27000 binary digits , while that of the same message encoded as 3 symbols/codeword and 8 binary digits/codeword is 24000 binary digits.

3. the coding efficiency of the longer message is 0.8616, that of the shorter message is 0.9727.
The noisy channel.
In a noisy channel every output codeword y has a finite probability of being different from the input codeword x because of some noise added by the channel during the transmission. 

For example, we can imagine that a source produces a long message of 1000 symbols taking them in equal proportion from an Alphabet of 16 different symbols, As = s1, s2, …, s16. The symbols are encoded as 16 different codewords, x1, x2, …, x16, of 4 binary digits each.

Number of binary digits in each codeword.
nbits = 4;
 
Symbols.
S = [0:15]';
ns = length(S);
 
Codewords: we use the function ‘dec2binvector’ to obtain a representation of all symbols with 4 bits codewords. This is our ‘codebook’.
codewords = zeros(ns,nbits);
for i = 1:ns
    codewords(i,:) = +dec2binvector(S(i),nbits);        
end
 
Here we produce a message of 1000 symbols (out of the 16 possible) and encode the message as 1000 codewords.
nsymbols = 1000;
message = randi(16,nsymbols,1);
X = zeros(nsymbols,nbits);
for i = 1:nsymbols
    ind = message(i);
    X(i,:) = codewords(ind,:);
end
 
Here we simulate a noisy channel with an error rate of 10% in flipping bits (from 0 to 1 or from 1 to 0): this is called a binary symmetric channel. To this end, we generate a flipping matrix.
p_flip = 0.1; flip_mat = zeros(nsymbols,nbits);
for i = 1:nsymbols
    for j = 1:4
        flip_mat(i,j) = binornd(1,0.1);
    end
end
 
which is the used to generate the channel output Y from the channel input X. 
flip_mat = logical(flip_mat);
Y = X;
Y(flip_mat) = -(X(flip_mat)-1);

Here we create a table with the codewords (listed as their index in the codebook) in the channel input X and output Y. 
XY_flips = zeros(nsymbols,2);
for i = 1:nsymbols
    [~,~,XY_flips(i,1)] = intersect(X(i,:),codewords,'rows');
    [~,~,XY_flips(i,2)] = intersect(Y(i,:),codewords,'rows');
end
 
Here we count for each input xi that was transmitted the number of times that a specific output yj was received: this is a table of joint counts. 
Joint_counts = zeros(ns,ns);
for i = 1:ns
    for j = 1:ns
    test_pair = [i j];
    ib = XY_flips(:,1) == i & XY_flips(:,2) == j;
    Joint_counts(i,j) = sum(ib);
    end
end

Alternatively we can use MATLAB ‘hist3’ or ‘accumarray’ functions;
Joint_counts = hist3(XY_flips,[ns ns]);
Joint_counts = accumarray(XY_flips,1);
  
Here we calculate the marginal sums (sum of each x for different y’s and of each y for different x’s) and the total sum, which is of course equal to the total number of codewords trasmitted.
Sum_X = sum(Joint_counts,2);
Sum_Y = sum(Joint_counts,1);
Sum_XY = sum(Joint_counts(:));
Joint_counts_table = [[Joint_counts Sum_X];[Sum_Y Sum_XY]];

Here we make the table of joint and marginal counts.
cnames = {'y1','y2','y3','y4','y5','y6','y7','y8','y9','y10','y11','y12','y13','y14','y15','y16','SUM X'};
rnames = {'x1','x2','x3','x4','x5','x6','x7','x8','x9','x10','x11','x12','x13','x14','x15','x16','SUM Y'};

Joint_xy_counts = figure('Position',[400 500 800 400]);
t = uitable(Joint_xy_counts,'Data',Joint_counts_table,'ColumnName',cnames,…  'RowName',rnames,'FontWeight','bold','FontSize',16,'RowStriping','off','ColumnEditable',true); 
t.Position(3) = t.Extent(3);
t.Position(4) = t.Extent(4);
 
[image: ]

[image: ]or we can represent the joint counts as a histogram:
hist3(XY_flips,[ns ns]);
zlim([0.01 60]); 
xlabel('X');ylabel('Y');zlabel('Counts');
box on; grid on

or as a heat map:
imagesc(Joint_counts); xlabel('X');ylabel('Y')

We can see from this table how due to the 10% probability of the channel to flip each bit, some inputs are transmitted as a different output. For example, input x2 is transmitted correctly 44 times as output y2, and incorrectly once as y1, twice as y4, 4 times as y6, and 4 times as y10.

If we divide each number in the table by the total number of codewords transmitted we obtain the joint probability distribution of X and Y, p(X,Y).

Joint_prob_table = Joint_counts_table/Sum_XY;
cnames = {'y1','y2','y3','y4','y5','y6','y7','y8','y9','y10','y11','y12','y13','y14','y15','y16','p(X)'};
rnames = {'x1','x2','x3','x4','x5','x6','x7','x8','x9','x10','x11','x12','x13','x14','x15','x16','p(Y)'};
cwidth = {90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90};
Joint_xy_prob = figure('Units','normalized','Position',[0.15 0.4 .85 .4]);
t = uitable(Joint_xy_prob,'Data',Joint_prob_table,...
            'ColumnName',cnames,'RowName',rnames,'ColumnWidth',cwidth,... 
            'FontWeight','bold','FontSize',16,'RowStriping','off','ColumnEditable',true); 
t.Position(3) = t.Extent(3);
t.Position(4) = t.Extent(4);

[image: ]
The entropy of this joint distribution p(X,Y) is the average Shannon information of every possible pair of values of X and Y. We can easily calculate  as a generalization of the entropy of a single variable X:



as a dot product. It is important to include in the product only the indices corresponding to non zero values of joint probability as log2(0) is –inf:
Joint_prob = Joint_prob_table(1:ns,1:ns);
ind = find(Joint_prob); 
H_xy = -Joint_prob(ind)'*log2(Joint_prob(ind));

Alternatively, we can use the ‘JointEntropy’ function from DWINNEL_MI Toolbox:
H_xy = JointEntropy(XY_flips);

We notice here that if all possible pairs of X and Y value are equally probable, then we have a uniform probability distribution p(X,Y), which is defined as the Maximum Entropy Joint Distribution.

We also notice the distribution of X can be obtained by summing each value of X over all possible values of Y (that is, summing the values in each row of the table), and the distribution of Y can be obtained by summing each value of Y over all possible values of X (that is, summing the values in each column of the table). 

p_X = sum(Joint_prob,2);
p_Y = sum(Joint_prob,1);
p_XY = sum(Joint_prob(:));

This process is called marginalization, as the resultant marginal distributions p(X) and p(Y) are usually appended on the right and bottom margins, as shown in the joint probability distribution table above.

If X and Y are statistically independent, then the joint distribution is equal to the outer (dyadic = column vector x row vector) product of the two distributions:



Joint_prob_from_product = p_X * p_Y;
 
Joint_prob_calc = figure;set(Joint_prob_calc,'Units','normalized','Position',[0.4 0.2 0.5 0.8],…
'Name','Observed vs calculated Joint Prob. Distr.')
[image: ]
subplot(2,2,1)
bar(p_X);xlim([0 17]);xlabel('x index');ylabel('p(x_i)');title('p(X)')
subplot(2,2,2)
bar(p_Y);xlim([0 17]);xlabel('y index');ylabel('p(y_j)');title('p(Y)')
subplot(2,2,3)
imagesc(Joint_prob); 
xlabel('x index');ylabel('y index');box on;title('Observed p(X,Y)')
subplot(2,2,4)
imagesc(Joint_prob_from_product); 
xlabel('x index');ylabel('y index');box on;title('Calculated p(X,Y)')


Furthermore, if X and Y are statistically independent,





since:				 


 
then H(X,Y) can be derived as the sum of H(X) and H(Y) and:



for example, for the calculated joint distribution we have:





H_xy_prod = -Joint_prob_from_product(:)'*log2(Joint_prob_from_product(:));
H_x = -p_X'*log2(p_X);
H_y = -p_Y*log2(p_Y');
H_xy_prod = H_x + H_y;
I_xy_prod = H_x + H_y - H_xy_prod;

By the same token, if X and Y are NOT statistically independent, then:



In fact, we obtain for the observed joint distribution:

      
 
 



The summation: 

I_xy = H_x + H_y - H_xy;

is called the Mutual Information  of X and Y, and is defined as:


Rearranging as: 



we can also see that the Mutual Information  is the average reduction in the uncertainty of the joint distribution over the estimate we could derive from just knowing the marginal distributions  and .

Another way to look at mutual information is to consider the entropy of the output in relation to the entropy of the channel noise . For this purpose, we recall here that the conditional probability of the xi value of X given that Y has the value yj, can be calculated from the joint counts table by dividing the counts of the pair xi yj by the sum of the counts of all the pairs that include yj (this is the marginal sum of yj). For example, if we want to know the conditional probability , we divide the value of the joint counts  by the sum of the counts of all the pairs that have :

i = 3;j = 4;
p_x3_given_y4 = Joint_counts(i,j)/Sum_Y(j);

The same result can be obtained by working with the joint probability distribution , which is just a scaling of the joint counts by the total number of pairs. Thus, we obtain:

	p_x3_given_y4 = Joint_prob(i,j)/p_Y(j);

and likewise:

rearranging:



and substituting into the expression for mutual information we derive:






H(Y|X)
H(Y)





where  is the conditional entropy of Y given X. Thus: 


and we can likewise derive:



 is the residual entropy (uncertainty) in Y after taking into account X, and thus is the entropy of Y that cannot be explained by X. Since:


it means that:


is the entropy of the noise  added by the channel to X and the mutual information:



is the residual uncertainty in Y after we have removed the uncertainty provided by the channel noise in the direction . Likewise:



is the residual uncertainty in X after we have removed the uncertainty provided by the channel noise in the direction . 


[image: ]Shannon presented an additional intuitive way of understanding conditional entropy as related to the channel noise: because of this noise, each xi input transmitted through the channel can give origin to  number of y outputs. Likewise, assuming an inverse transmission of Y through the channel to generate X, each yj can give origin to  number of x (which is the same as saying that a single yj output can originate from  possible x inputs).
[image: ]
The relationship between , , , , , and , can be summarized nicely with a bar diagram:

bar_y = [H_xy 0 0 0 0 0 0 0; …
              0 H_y H_xgy 0 0 0 0 0; ...
              0 0 0 H_ygx H_x 0 0 0; …
              0 0 0 0 0 H_ygx I_xy H_x-I_xy ]
barplot = bar(bar_y,'stacked');
barplot(1).FaceColor = 'm';
barplot(2).FaceColor = 'g';
barplot(3).FaceColor = 'y';
barplot(4).FaceColor = 'y';
barplot(5).FaceColor = 'c';
barplot(6).FaceColor = 'w';
barplot(7).FaceColor = 'r';
barplot(8).FaceColor = 'w';
set(gca,'FontSize',14,'LineWidth',1,'XTick',[1 2 3 4],'XTickLabel',{'','','',''});ylabel('bits');
legend('H(X,Y)','H(Y)','H(X|Y)','H(Y|X)','H(X)','','I(X;Y)','','Location','northeastoutside')

which shows clearly that mutual information is the amount of information (bits) shared by the input X and the output Y.  Likewise, we can see that:


 is the average reduction in the uncertainty of X (H(X)) once Y is known (H(X|Y)), or in the uncertainty of Y (H(Y)) once X is known (H(Y|X)).


A little algebra yields an additional expression:



which shows that mutual information is the portion of the joint entropy  that is left once we have removed , which is the entropy  due to noise in X, plus the entropy  due to noise in Y. 

In other words, the joint entropy  acts as a container consisting of three non-overlapping subsets, , , , as shown in the Venn diagram:

[image: ]
Finally, it is customary to define the transmission efficiency of a noisy channel as the percentage of the output Y entropy H(Y) that is shared by the input X:



Thus, a transmission efficiency of 0.5 means that half of the entropy of the output is due to the channel noise.


Capacity of a noisy channel.
Let’s assume that in our case the channel is transmitting at a rate of 1 binary digit/s = 0.25 symbol/s. We can calculate the expected value of the noise entropy based on the probability of a flip, and that of a non-flip in each transmitted binary digit:

H_noise_flip = p_flip*log2(1/p_flip) + (1-p_flip)*log2(1/(1-p_flip))



However, the value of the noise entropy we obtain from the actual encoding with 4 binary digits/symbol is less:


H_x = Entropy(XY_flips(:,1));H_y = Entropy(XY_flips(:,2))
I_xy = MutualInformation(XY_flips(:,1),XY_flips(:,2))
Noise_Y = (H_y - I_xy)/4;Noise_X = (H_x - I_xy)/4;

This simple observation show how a specific encoding can decrease the magnitude of the channel noise. With regard to this point Shannon offered a very intuitive example: imagine a communication system in which an observer can see both the message M that is sent and the message M’ that is received (with errors due to the channel noise). This observer records the errors and transmits them using a correction channel to a correcting device that corrects the errors in the received message to obtain the original message M. 

If the correction channel has a capacity: 
C’ = H(X|Y)
Then, it is possible to encode the correction data and to send it over this channel to the correcting device so that errors can be decreased to an arbitrarily small amount. 
[image: ]
H(X|Y) can be considered as the additional information that must be supplied at the receiving point to correct the received message. In other words, if the rate of information production by the source is H(X), but the channel noise introduces errors such that the rate of information transmission is R < H(X), then we can say that:

R = H(X) - H(X|Y) = I(X;Y)

Thus, the maximal information transmission rate is achieved when I(X;Y) reaches channel capacity:
Cnoisy channel = max(H(X) - H(X|Y)) = max(I(X;Y))

[image: ]It should be noticed that as long as H(X) < C, by optimal encoding is possible to reduce the noise entropy H(X|Y), and thus the transmission errors, to an arbitrarily small value (this is conceptually the same as adding amounts of H(X|Y) via a correction data channel). However, if H(X) > C, then the only way to operate the channel at capacity is to accept an error rate H(X|Y). This is the Fundamental Theorem for a Noisy Channel. It can be represented graphically as the following:
 

The maximal rate of transmission information through the channel, its capacity C, cannot be exceeded, so if the rate of information production H(X) is higher than C, then only an amount of information C = H(X) - H(X|Y) = I(X;Y) can go through correctly.



Based on this theorem, mutual information, , is the logarithm of the number m of input values that can be discriminated from a knowledge of the output values, where  is limited by the noise in the channel.  The upper bound of  is the channel capacity:

C = log mmax      ,     mmax = 2C 

Likewise, since mutual information is symmetric (i.e. I(X;Y) = I(Y;X)), m  is also the logarithm of the number of output values that can be reliably discriminated from a knowledge of the input values. 

SPECIAL TOPICS 

Mutual information methods for the analysis of multiple sequence alignments. During the past decade many efforts have been devoted to understanding the evolutionary dynamics of protein families through the examination of multiple sequence alignments (MSAs). In a MSA some positions are highly conserved, while others vary. The conserved positions are clearly important, but the non-conserved positions are also important because the destabilizing effects of a given amino acid at one position can be compensated by the stabilizing effect of a certain amino acid at another position: in other words, two (or more) positions in a protein sequence can be coevolving, that is varying together (= covarying).

[image: ]A large fraction of the positions that covary are due to residues that are close to each other in space: for example, the introduction of a cavity in the protein by the mutation of a large to a small side chain residue, can be compensated by the corresponding mutation of a vicinal residue from a small to a large side chain. Due to the strong statistical correlation between covarying positions and positions that are close to each other in space, information on the covarying positions of a protein can be used effectively to predict its 3-dimensional structure: a public server, EVFOLD (http://evfold.org/), provides structure predictions based on coevolution analysis.

[image: ]If we are interested in the prediction of a protein fold, the most important covaring positions are clearly those that identify residues close in space, but distant from each other in linear sequence. However, in many cases structure prediction is not our goal, as we are interested in identifying covarying positions as pointers of residues involved in specific catalytic activities and/or in protein stability. It is not unusual to find that residues necessary for catalysis and structurally important non-catalytic residues act in concert to maintain the architecture and function of the active site: thus, covariation analysis can also be very helpful in engineering new enzyme forms. 

A wide variety of algorithms have been developed to detect covarying positions from a MSA. The first step in this type of analysis is always to convert each sequence of the MSA into a vector of numbers.

[image: ]In CHAPTER 10 we have learned that the traditional way to study covariation between vectors is to calculate a covariance matrix. However, in this case the numbers representing the different residues are just symbols and do not have a numeric meaning. Therefore, it makes no sense to calculate the mean of a column or a row, and we cannot calculate a covariance matrix.

However, we can consider each vector of symbols as the multiple outcomes of a random variable, X, and thus calculate its average Shannon information, the entropy H(X). Of course, everything we just said for protein sequences can be applied just as well to nucleic acids sequences. For example, consider a DNA sequence X of 1000 nucleotides with an expected uniform frequency of all four bases:

bases = 'GATC';
nbases = 1000;
ntypes = length(bases);
bases_id = randi(ntypes,[1,nbases]);
dna_seq = bases(bases_id);
H_dna_seq = log2(ntypes); 

TCGCTATGTAACTACCCTTCGCGATACACGTCAAACCCCAATAGGCGTGTTAAGTGCGTGGGTTCT…

The expected entropy of X is H(X) = log2(4) = 2 (bits/base), but due to the finite number of symbols, the observed frequencies of G,A,T,C, stored in the column vector p = [0.220, 0.259, 0.264, 0.257], are slightly different from ¼, and the observed entropy of X is:



for i = 1:ntypes
p_bases(i,1) = sum(bases_id == i)/nbases;
end
H_dna_seq = -p_bases'*log2(p_bases);

If we expected the DNA sequence to have an entropy of 2 bits/base, then we are not very surprised to observe an entropy of 1.9964 bits/base. The divergence between the expected and the observed distributions can be represented with a function called the Kullback-Leibler Divergence, DKL, defined as:



p_bases_exp = ones(ntypes,1)/ntypes;
Dkl_dna_seq = p_bases'*log2(p_bases./p_bases_exp);

Intuitively,  represents the number of extra bits/base that must be transmitted to identify a base if only the observed probability distribution is available to the receiver.

In various contexts  is often referred to as the relative entropy of X or, if the expected distribution is the uniform distribution, as the self information of X, I(X) . 

As a second example, consider the sequence X’:

bases_id_temp = [ones(1,500) 2*ones(1,300) 3*ones(1,150) 4*ones(1,50)];
bases_id_ind = randi(nbases,[1,nbases]);
bases_id = bases_id_temp(bases_id_ind);
dna_seq = bases_string(bases_id);

TGGGAGTAACGAGAGGTAGGAGAATTGAGTGAGTGGAGAGTTGGGAGTGAGGGGGATCGTTTAGTC…

The expected frequencies of G,A,T,C were pexp = [0.5, 0.3, 0.15, 0.05], while the observed frequencies are pobs = [0.469, 0.315, 0.158, 0.058], and the entropy of X’ is:



for i = 1:ntypes
p_bases(i,1) = sum(bases_id == i)/nbases;
end
H_dna_seq = -p_bases'*log2(p_bases);
 
In this case we have:



p_bases_exp = [0.5 0.3 0.15 0.05];
Dkl_dna_seq = p_bases'*log2(p_bases./p_bases_exp);
Dkl_dna_seq = p_bases'*(log2(p_bases)-log2(p_bases_exp));

and the self information of X’ is: 

p_bases_unif = ones(ntypes,1)/ntypes;
I_dna_seq = p_bases'*log2(p_bases./p_bases_unif);
I_dna_seq = p_bases'*(log2(p_bases)-log2(p_bases_unif));


Finally, consider a DNA sequence with both strands (named here for convenience X and Y). We use as the template strand the strand considered above, and we only generate the complementary strand:

bases_id_1 = bases_id == 1;
bases_id_2 = bases_id == 2;
bases_id_3 = bases_id == 3;
bases_id_4 = bases_id == 4;
 
bases_id_compl = zeros(1,nbases);
bases_id_compl(bases_id_1) = 4;
bases_id_compl(bases_id_2) = 3;
bases_id_compl(bases_id_3) = 2;
bases_id_compl(bases_id_4) = 1;
 
dna_seq_compl = bases_string(bases_id_compl);

GGGAGAAGATGGGAGCAGGAGAATATACTAATAAAATCGATAAGGAATGGGAAAGTAGGAAGGAGGT…
CCCTCTTCTACCCTCGTCCTCTTATATGATTATTTTAGCTATTCCTTACCCTTTCATCCTTCCTCCA…

We can calculate an entropy for X, an entropy for Y, which of course are the same:

H_x = -p_bases'*log2(p_bases);
H_y = -p_bases_compl'*log2(p_bases_compl);




and a joint entropy for (X,Y). If the two strands had sequences independent from each other we would have to consider 16 possible pairs of bases to obtain the joint distribution:

p_pairs_exp = p_bases*p_bases_compl';

	
	G
	A
	T
	C

	G
	0.027
	0.074
	0.148
	0.220

	A
	0.018
	0.050
	0.099
	0.148

	T
	0.009
	0.025
	0.050
	0.074

	C
	0.003
	0.009
	0.018
	0.027



However, as expected, the joint probability distribution shows that only GC, CG, TA, and AT pairs actually occur:

p_pairs = zeros(ntypes,ntypes);
for i = 1:ntypes
    for j = 1:ntypes
    p_pairs(i,j) = sum(bases_id == i & bases_id_compl == j)/nbases;
    end
end

	
	G
	A
	T
	C

	G
	0
	0
	0
	0.469

	A
	0
	0
	0.315
	0

	T
	0
	0.158
	0
	0

	C
	0.058
	0
	0
	0



Thus, the joint entropy is:

pos_ind = find(p_pairs(:))
p_pairs_pos = p_pairs(pos_ind);
H_y = -p_pairs_pos'*log2(p_pairs_pos);



and the mutual information is:

p_pairs_exp_pos = p_pairs_exp(pos_ind);
I_xy = p_pairs_pos'*log2(p_pairs_pos./p_pairs_exp_pos);

Or alternatively, using MATLAB accumarray:

X = bases_id';
Y = bases_id_compl';
h = accumarray([X Y], 1)/nbases; 
xy_prod = sum(h,2)*sum(h,1);
xy_ind = h~=0;
h = h(xy_ind);
xy_prod = xy_prod(xy_ind);
I_xy = h'*log2(h./xy_prod);







By looking at the summation expression, we notice here that the mutual information  is the Kullback-Leibler divergence  between the observed and the expected ioint probability distributions. Thus,  can be interpreted both as the amount of information shared between X and Y, and as the number of extra bits/pair that must be acquired to identify a pair if the observed joint probability distributions p(X,Y) is known, but not the marginal probabilities p(X) and p(Y).
It’s important to understand how the joint entropy distribution p(X,Y) and the mutual information  change as a conseguence of some base changes (mutations) in one or both strands. Let’s consider mutations in only one strand. These could be for example 40 mutations appearing in a stretch of 1000 bases at the moment of DNA replication:

Y_mut = Y;
nmut = 40;

Position of the mutations.
flip_base = randi(nbases,nmut);

Type of mutation: GT, AC, TG, CA.
for i = 1:nmut
if Y(i) == 1
   Y_mut(i) = 3;
elseif Y(i) == 2
   Y_mut(i) = 4; 
elseif Y(i) == 3
   Y_mut(i) = 1;
elseif Y(i) == 4
   Y_mut(i) = 2;
end
end

Joint probability distribution.
h = accumarray([X Y_mut], 1)/nbases;
p_X = sum(h,2);
p_Y_mut = sum(h,1);
xy_prod = p_X*p_Y_mut;
xy_ind = h~=0;
p_XY_mut = h(xy_ind);
p_XY_prod = xy_prod(xy_ind);

Entropies and mutual information.
H_x = -p_X'*log2(p_X);
H_y_mut = -p_Y_mut*log2(p_Y_mut');
H_xy_mut = -p_XY_mut'*log2(p_XY_mut);
I_xy_mut = p_XY_mut'*log2(p_XY_mut./p_XY_prod);

We notice how as a consequence of the mutations the joint probability distribution shows also some off-diagonal terms, representing the probability of those pairs that do not follow Watson-Crick base pairing:

	
	G
	A
	T
	C

	G
	0
	0.013
	0
	0.456

	A
	0.018
	0
	0.297
	0

	T
	0
	0.152
	0
	0.006

	C
	0.055
	0
	0.003
	0


As a consequence the joint entropy is higher, , as more information is needed on average to identify a pair, and the mutual information is less, , because on average, knowing a base in one strand gives less information about the base in the other strand.

[bookmark: _GoBack]The same type of analysis we have carried out for DNA strands can be equally applied to different columns (positions in the sequence) of a multiple sequence alignment of either nucleic acids or proteins. The difference is that in proteins we have 20 amino acids and so there are 400 possible pairs of residues versus 16 possible pairs of bases. 

[image: ]The key principle remains that structural constraints (i.e. Watson-Crick pairing) increase mutual information. Thus, for example, if two residues in a protein are contacting each other within a small volume, any mutation of one residue that will increase the volume of its side chain will force the other residue to mutate to decrease the volume of its side chain, in order to maintain a constant volume of both side chains together. A similar argument can be made for close residues that have complementary charges (i.e., one negative and one positive). In this case mutation of the negative side chain to a positive one will force a change in the other side chain from positive to negative. In general, we can expect that the stronger the structural constraint between two positions X and Y in a protein sequence, the higher will be the mutual information between the columns of the multiple alignment of several homologous proteins. 

However, it is important to understand that incorrect values of mutual information can be obtained if the MSA contains a small number of sequences, and the joint probability distribution is not sampled adequately. For example, we can generate two hypothetical column of a protein MSA containing 1000 sequences, based on the observed frequencies of amino acids in proteins:

resi = 'ARNDCQEGHILKMFPSTWYV';
nresi = 1000;ntypes = length(resi);

X column.
p_X_exp = [0.01 0.68 0.01 0.005 0 0.01 0 0.005 0.08 0 0 0.17 0 0 0.01 0 0.01 0 0 0.01];
X_vec = [];
for i = 1:ntypes
    X_vec = [X_vec i*ones(1,p_X_exp(i)*nresi)];
end
X_vec = X_vec';
X_ind = randi(nresi,[1,nresi]);
X = X_vec(X_ind);
X_seq = resi(X)';
for i = 1:ntypes
p_X(i,1) = sum(X == i)/nresi;
end
pos_ind = find(p_X);H_x = -p_X(pos_ind)'*log2(p_X(pos_ind));
 
Y column. 
p_Y_exp = [0.01 0 0 0.68 0 0.08 0.17 0 0.01 0 0.01 0 0.01 0 0.01 0 0.005 0.01 0 0.005];
Y_vec = [];
for i = 1:ntypes
    Y_vec = [Y_vec i*ones(1,p_Y_exp(i)*nresi)];
end
Y_vec = Y_vec';
Y_ind = randi(nresi,[1,nresi]);
Y = Y_vec(Y_ind);
Y_seq = resi(Y)';
for i = 1:ntypes
p_Y(i,1) = sum(Y == i)/nresi;
end
pos_ind = find(p_Y);
H_y = -p_Y(pos_ind)'*log2(p_Y(pos_ind));

Joint probability distribution including all pairs.
h = accumarray([X Y], 1)/nresi;
[hx,hy] = size(h);
jpd = zeros(ntypes,ntypes)
jpd(1:hx,1:hy) = h;

Joint probability distribution including only 200 pairs.
h_small = accumarray([X(400:600) Y(400:600)], 1)/nresi;
[hx,hy] = size(h_small);
jpd_small = zeros(ntypes,ntypes)
jpd_small(1:hx,1:hy) = h_small;
 
JPD_sampling = figure;
set(JPD_sampling,'Units','normalized',…
'Position',[0.3 0.3 0.2 0.7]);
subplot(2,1,1);spy(jpd); title('Large MSA');
subplot(2,1,2);spy(jpd_small); title('Small MSA');
[image: ]
We can use MATLAB “spy’ function to visualize the pairs with non-zero frequency in the MSA with 1000 sequences (48 pairs), and in the MSA with only 200 sequences (23 pairs).






Entropy(X);
Entropy(Y);
JointEntropy([X Y]);
MutualInformation(X,Y)
Entropy(X(500:600));
Entropy(Y(500:600));
JointEntropy([X(500:600) Y(500:600)])
MutualInformation(X(500:600),Y(500:600))


In practice, mutual information as such is very ‘noisy’ when applied to protein MSAs, because the elements in each column of the MSA are not statistically independent from each other (as required to calculate probabilities correctly), but there is some correlation between them originating from phylogenetic relationships between homologous sequences that belong to the same branch of an evolutionary tree. For example, a mutation in an ancestral protein, which is clearly a single evolutionary event, appears in the MSA as an independent event that occurred in each of the proteins that descended from that ancestor. Additional apparent correlation between the columns of an MSA can also originate from casual co-variation and/or from uneven or incomplete sequence sampling. As we have seen in the example above, MSAs with a small number of sequences are likely to produce false (usually higher) covariation signals between columns. 

To overcome these problems several modified mathematical expressions of mutual information are often used in the calculation of a mutual information matrix, MI in which the mutual information between each i and every j column of the MSA is calculated. Thus, the basic MI matrix is:


We start by converting an MSA array of amino acids symbols into a numeric format (called here nmsa). For example, here we apply the conversion to the MSA of the bacterial protein KDO8P synthase, an enzyme involved in the synthesis of the polysaccharide:

msafile = '../DATABASE/KDSA_comb_trimmed.fasta';
msafile_type = 'faln';
 
switch msafile_type 
    case 'faln'
    [KDSA_comb_smsa,KDSA_comb_nmsa] = faln_to_nmsa(msafile);
    case 'aln'        
    [KDSA_comb_smsa,KDSA_comb_nmsa] = aln_to_nmsa(msafile);
end

Next, the MI matrix can be calculated using the two following functions:

1. NMSA_to_fastMI( nmsa ). This function produce a MI matrix starting from a MSA in MATLAB numeric format (.nmsa). It calls the "fastMI" function. 

function [ MI_mat ] = NMSA_to_fastMI( nmsa )
[~,ncols] = size(nmsa);
MI_mat = zeros(ncols,ncols);

for i = 1:ncols
    for j = i:ncols
    MI_mat(i,j) = fastMI(nmsa(:,i),nmsa(:,j));
    MI_mat(j,i) = MI_mat(i,j);    
    end
    MI_mat(i,i)=NaN;
end

end

2. fastMI(X,Y). Mutual information between two column vectors, X and Y, having integer values.

function MI = fastMI(X,Y)
N = size(X,1);
const = log2(N);
h = accumarray([X Y], 1); 
xy_prod = sum(h,2)*sum(h,1);
xy_ind = h~=0;
MI = const + (sum(h(xy_ind) .* log2(h(xy_ind)./xy_prod(xy_ind))))/N;

end

The most popular modified forms of the MI matrix are:

1. MIp (Product corrected Mutual Information)



where  is the mean MI of position i with all other positions. It can be derived from the MI matrix according to the algorithm of Dunn, Wahl, and Gloor (2008) using the function MI_to_MIP.

function [ MIP_mat ] = MI_to_MIP(mat )

[rows,cols]=size(mat);
mean_mat=nanmean(mat(:));
mean_row=zeros(rows,1);
var_row=zeros(rows,1);
MCA_mat=zeros(rows,cols);

% Here we calculate the MCA matrix.
for i=1:rows
    mean_row(i)=nanmean(mat(i,:));
    var_row(i)=nanvar(mat(i,:));   
end

for i=1:rows
    for j=i:rows
    MCA_mat(i,j)=(mean_row(i)*mean_row(j))/mean_mat;
    MCA_mat(j,i)=MCA_mat(i,j);
end
MCA_mat(i,i)=NaN;
end

% Here we subtract the MCA matrix from the MI matrix
MIP_mat=mat-MCA_mat;

end

2. Zpx2 (product of the MIp z-scores for each individual position)



3. Zpx (square root of the product of the MIp z-scores for each individual position)



function [ ZPX_mat,ZPX2_mat ] = MIP_to_ZPX(mat )

[rows,cols]=size(mat);
mean_row=zeros(rows,1);
std_row=zeros(rows,1);
ZPX2_mat=zeros(rows,cols);

for i=1:rows
    mean_row(i)=nanmean(mat(i,:));
    std_row(i)=nanstd(mat(i,:));   
end
for i=1:rows
    for j=i:rows

    ZPX2_i=(mat(i,j)-mean_row(i))/std_row(i);
    ZPX2_j=(mat(i,j)-mean_row(j))/std_row(j);
    ZPX2_mat(i,j)=(ZPX2_i*ZPX2_j);

% Here we correct for the product of two negative ZPX2_i and ZPX2_J, which
% would give the wrong MI.
    
    if (ZPX2_i<0&&ZPX2_j<0)
        ZPX2_mat(i,j)=-ZPX2_mat(i,j);
    end

ZPX2_mat(j,i)=ZPX2_mat(i,j);
    end
    
    ZPX2_mat(i,i)=NaN;

% Here we take the square root and then only the real part.
ZPX_mat=real(sqrt(ZPX2_mat));

end
end

We calculate here these different types of MI matrices for the msa of KDO8P synthase that we already converted to numeric format (nmsa). To start with, we can visualize the entire MSA as a heat map:

MSA_heat_map = figure;
imagesc(KDSA_comb_nmsa);xlabel('Res. no.');ylabel('Seq. no.');
title('MSA');colorbar

[image: ]

Next, we calculate the different MI maps:

MI_mat = NMSA_to_fastMI(KDSA_comb_nmsa);
MIP_mat = MI_to_MIP(MI_mat);
[ZPX_mat,ZPX2_mat] = MIP_to_ZPX(MIP_mat);
 
MI_matrices = figure
set(MI_matrices,'Units','normalized','Position',[0.2 0.2 0.56 0.8],'Name','MI_matrices');
subplot(2,2,1);imagesc(MI_mat);set(gca,'YDir','Normal');
xlabel('Res. no.');ylabel('Res. no.');title('MI');colorbar, colormap jet
subplot(2,2,2);imagesc(MIP_mat);set(gca,'YDir','Normal');
xlabel('Res. no.');ylabel('Res. no.');title('MIp');colorbar, colormap jet
subplot(2,2,3);imagesc(ZPX_mat);set(gca,'YDir','Normal');
xlabel('Res. no.');ylabel('Res. no.');title('Zpx');colorbar, colormap jet
subplot(2,2,4);imagesc(ZPX2_mat);set(gca,'YDir','Normal');
xlabel('Res. no.');ylabel('Res. no.');title('Zpx2');colorbar, colormap jet

[image: ]

A significant localization of the MI signal is visible as we move from the standard MI map to the modified MIP, and ZPX maps. This localization can be shown to correspond to an increased signal/noise ratio by comparing the MI maps with the protein C distance map derived from the pdb atomic coordinates of KDO8P synthase.

First, we import the pdb data:

pdbfile = '../DATABASE/KDSA_simple.pdb';
KDSA_pdb = pdbread(pdbfile);
START = 1;END = 280;PDB_START = 1;PDB_END = 280;
nmsa = KDSA_comb_nmsa(:,PDB_START:PDB_END);
REF_length = numel(nmsa(1,START:END));
cmsa = int2aa(nmsa);
 
Then we use some functions from the MSAvolve Toolbox for coevolution analysis of proteins to superimpose the MI maps (colored dots of radius proportional to the MI score) to the C distance map calculated with a threshold of 8 Å (grey areas).

near = 1;ncov = REF_length;radius = 8;
 
[c_distances,sorted_c_distances,sorted_MI,sorted_MIP,sorted_ZPX,sorted_ZPX2] = ...
    coev_distance_matrix_3(pdbfile,1,PDB_START,PDB_END,MI_mat,...
    MIP_mat,ZPX_mat,ZPX2_mat,radius,near,ncov,3,...
    [0,1,0],[1 0 0],[1 0 1],[0 0 1],...
    [0.9 0.9 0.9],[0.9 0.9 0.9],[0.9 0.9 0.9],[0.9 0.9 0.9],...
    [1.0 1.0 1.0],[1.0 1.0 1.0],[1.0 1.0 1.0],[1.0 1.0 1.0]);
 
[image: ]
The resulting remarkable similarity between the ZPX maps and the distance map, is consistent with the initial assertion that mutual information between the columns of a MSA reflects the strength of the underlying structural constraints.

Further improvements in the signal to noise ratio have been achieved with more sophisticated modifications of the simple MI signal, which belong to the general class of the direct coupling analysis (DCA) algorithms (http://evfold.org/). 
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