
Building the Digital Thread 
between MBSE and MBD to 
Meet ISO26262 for 
Embedded Software

Authors: Joshua McCready (Ford), Hans Gangwar (Ford), Josh Kahn (MathWorks)



2

Problem Statement

Assessing ISO26262 Part 6 compliance for new and existing Ford In House software developed with 
Model Based Design software has demonstrated the need for additional best practices 

These best practices are needed to achieve connectivity to the System Engineering process and to 
allow for traceability and thread pulling of SW development artifacts*

*System and software requirements, model and data dictionary, implementation, test cases 



3

Summary of Gaps found in Assessing ISO26262 Part 6 

The following pain points were identified and targeted:

• Architecture models and implementation models were maintained in separate tools resulting in a poor 
connection between them

• Requirements were previously maintained in Microsoft Word with implicit linking to the Simulink 
implementation models resulting in the need for manual traceability

• Change tracking/impact analysis in models was difficult because one file contained all the subsystems 

• Traceability between requirements, models, and tests was maintained in a Microsoft Excel spreadsheet 
resulting a labor-intensive process change management process

• Relationships between high-level requirements, implementation requirements, implementation, and test 
cases were implicit making validation of high-level requirements difficult



4

Solution

• Adopted an Integrated MBSE – MBD workflow to better connect system and software design artifacts

• Created software functional architecture from required system functions via functional decomposition, allowing for focus on main SW function inputs and 
outputs upfront

• Created software technical architecture that connects to system technical architecture and production model, allowing for nesting up and down the 
System V

• Limited the duplication of sources of truth

• Used a requirements management tool enabling requirements being machine readable, have relationships between requirements, and traceability 

to other System V artifacts

• Adopted a componentized modeling style (Model Reference and Reference Data Dictionary) enabling impact analyses upon changes and traceability 

to other System V artifacts

• Continued use of Simulink Test to perform requirements-based SW V&V with machine readable requirements, enabling impact analyses upon 

changes and traceability to other System V artifacts



5

Process Overview

System Architecture

Stakeholder Needs

System Requirements

Software Requirements

Software Architecture

Software Detailed 
Design

Software Qualification

Software Integration

Software Unit 
Verification

System Qualification

System Integration

Future WorkFuture Work



6

Process Overview – Stakeholder Needs

System Architecture

Stakeholder Needs

System Requirements

Software Requirements

Software Architecture

Software Detailed 
Design

Software Qualification

Software Integration

Software Unit 
Verification

System Qualification

System Integration

Stakeholder Needs
Organization-level requirements are captured as 
Stakeholder Needs and Concept of Operations then 
decomposed into the System Requirements.



7

Process Overview – System Requirements

System Architecture

Stakeholder Needs

System Requirements

Software Requirements

Software Architecture

Software Detailed 
Design

Software Qualification

Software Integration

Software Unit 
Verification

System Qualification

System Integration

Structured System Requirements
System requirements are maintained in a tool outside 
MathWorks and split into three categories:
• Functional Safety Requirements
• Technical Safety Requirements
• System Functional Requirements



8

Process Overview – System Architecture

System Architecture

Stakeholder Needs

System Requirements

Software Requirements

Software Architecture

Software Detailed 
Design

Software Qualification

Software Integration

Software Unit 
Verification

System Qualification

System Integration

Implementation of System Requirements
The System Architectures are implemented in either an 
outside tool or System Composer and split into a 
Functional Architecture and a Technical Architecture.

System 
Functional 

Architecture

System 
Technical 

Architecture

Supports:
• Failure Mode Analysis, 
• Safety Goals, 
• System Functional Requirements

Supports:
• Functional and Technical Safety 

Requirements
• System Functional Requirements

Allocations



9

Process Overview – Software Requirements

System Architecture

Stakeholder Needs

System Requirements

Software Requirements

Software Architecture

Software Detailed 
Design

Software Qualification

Software Integration

Software Unit 
Verification

System Qualification

System Integration

Structured Software Requirements
The software requirements are decomposed from the 
System Requirements and maintained in an outside tool. 
Then, they are imported into Simulink Requirements via 
ReqIF* to establish traceability within the MathWorks 
toolchain.

All software requirements can be considered as Software 
Safety Requirements, some simply being QM if they 
support no Technical Safety Requirement.

*Requirements Interchange Format



10

Process Overview – Software Architecture

System Architecture

Stakeholder Needs

System Requirements

Software Requirements

Software Architecture

Software Detailed 
Design

Software Qualification

Software Integration

Software Unit 
Verification

System Qualification

System Integration

Software Architecture Fits Requirements Structure
The Software Architecture is built in System Composer and 
matches the structure of the Software Requirements.

Artifacts can be shared between the Software Architecture 
and the detailed production software model such as 
interfaces between different SW components.

Software 
Functional 

Architecture*

Software 
Technical 

Architecture

Allocations

Supports*:
• Failure Mode Analysis 
• Safety Goals
*Future Work

Supports:
• Technical Safety Requirements
• Software Safety Requirements



11

Process Overview – Software Requirements and Architecture

System Architecture

Stakeholder Needs

System Requirements

Software Requirements

Software Architecture

Software Detailed 
Design

Software Qualification

Software Integration

Software Unit 
Verification

System Qualification

System Integration

Software Architecture Fits Requirements Structure
The Software Architecture is built in System Composer and 
matches the structure of the Software Requirements.

Artifacts can be shared between the Software Architecture 
and the detailed production software model such as 
interfaces between different SW components.

Software 
Functional 

Architecture*

Software 
Technical 

Architecture

Allocations

Supports*:
• Failure Mode Analysis 
• Safety Goals
*Future Work

Supports:
• Technical Safety Requirements
• Software Safety Requirements



12

Process Overview – Software Detailed Design – 3 Pillars

System Architecture

Stakeholder Needs

System Requirements

Software Requirements

Software Architecture

Software Detailed 
Design

Software Qualification

Software Integration

Software Unit 
Verification

System Qualification

System Integration

Software Architecture Fits Requirements Structure
The Software Architecture is built in System Composer and 
matches the structure of the Software Requirements.

Artifacts can be shared between the Software Architecture 
and the detailed production software model such as 
interfaces between different SW components.

Software 
Functional 

Architecture*

Software 
Technical 

Architecture

Allocations



13

Process Overview – Software Detailed Design – Native Requirement Linkage

System Architecture

Stakeholder Needs

System Requirements

Software Requirements

Software Architecture

Software Detailed 
Design

Software Qualification

Software Integration

Software Unit 
Verification

System Qualification

System Integration

Software Architecture Fits Requirements Structure
The Software Architecture is built in System Composer and 
matches the structure of the Software Requirements.

Artifacts can be shared between the Software Architecture 
and the detailed production software model such as 
interfaces between different SW components.

Software 
Functional 

Architecture*

Software 
Technical 

Architecture

Allocations

Requirements are linked from Simulink Requirements to their associated architectural elements for direct 
traceability.



14

Process Overview – Software Detailed Design – Model Reference

System Architecture

Stakeholder Needs

System Requirements

Software Requirements Software Qualification

Software Integration

Software Unit 
Verification

System Qualification

System Integration

Software Architecture

Software Detailed 
Design

Software Functional Units are Linked as Behaviors
The software is designed as functional units rather than one 
large model, facilitating work-split, piece-wise integration, 
and impact analysis through Model Reference. These units 
exists as separate .slx files and are collected into a parent .slx
file.



15

Process Overview – Software Unit Verification

System Architecture

Stakeholder Needs

System Requirements

Software Requirements

Software Architecture

Software Detailed 
Design

Software Qualification

Software Integration

Software Unit 
Verification

System Qualification

System Integration

Future WorkFuture Work

Software Unit Verification Underway
Functional software requirements are in the process 
of being linked to Simulink Test Cases for verification 
and coverage analysis.

Functional 
Requirement

Functional Unit 
(Reference Model)

Test Case

Tests

Verifies



16

Process Overview – Ongoing Work

System Architecture

Stakeholder Needs

System Requirements

Software Requirements

Software Architecture

Software Detailed 
Design

Software Qualification

Software Integration

Software Unit 
Verification

System Qualification

System Integration

Next Steps
• Continually feedback Software Detailed Design to 

Software Architecture

• Create Design Verification Methods

• Link test cases to Design Verification Methods

• Create the Software Integration and Qualification 
Test Suites

• Identify dependencies of software integration and 
qualification testing and how to establish 
traceability across the project artifacts

• Develop System Integration and Qualification Tests

• Integrate Software Architecture with System 
Architecture

Future WorkFuture Work



17

Analyzing Traceability

Thread-Pulling Using Traceability Diagram
The Traceability Diagram feature of Simulink Requirements (introduced in R2021b) is planned to be used 
for thread-pulling activities

Legend

Simulink Models and Libraries

Requirements

Simulink Test



18

Conclusion

• Adopting a Model Reference and Reference Data dictionary modeling style enables easier 
impact analysis and makes generated code easier to read when paired with use of non-virtual 
buses

• Thread pulling of Technical Safety Requirements is done automatically with Traceability Diagrams 
in Simulink Requirements/Views in System Composer, enabling review that the Technical Safety 
Requirements are met and fully validated

• Using a requirements management tool enabled machine readable requirements allowing for 
greatly improved linking of artifacts

• Creating a software technical architecture model helped develop software implementation 
requirements and key artifacts can be shared between it and a production model that 
implements the detailed software design

• Applying a system engineering approach to create a software functional architecture improves 
ability for up front design



19

Linked Library versus Model Reference MBD Comparison

Linked Library File Structure
Main.slx

Main_functions.slx (linked library) 

Reuse_units.slx (linked library)

Main.sldd

Calibration.sldd (imported from header file)

Model Reference File Structure
Main.slx

Submain_function1.slx 

unit_function1.slx

unit_function2.slx

unit_function3.slx

Submain_function2.slx >

Submain_function3.slx >

Submain_function4.slx >

Submain_function5.slx >

Main.sldd

Config.sldd (imported from header file)

Calibration.sldd (imported from header file)

NonVirtualBus.sldd
(creates bus objects that appear in generated code)



20

Thank You

Thank you for joining us today.

Please direct any follow-up questions to:

Joshua McCready
jmccrea8@ford.com

Josh Kahn
joshkahn@mathworks.com

mailto:jmccrea8@ford.com
mailto:joshkahn@mathworks.com

