
1© 2015 The MathWorks, Inc.

Big Data con MATLAB

Lucas García

2

Agenda

• Introduction

• Remote Arrays in MATLAB

• Tall Arrays for Big Data

• Scaling up

• Summary

3

Architecture of an analytics system

Data from
business
systems

Data from instruments
and connected systems

Analytics
and Machine
Learning

4

How big is big?
What does “Big Data” even mean?

“Any collection of data sets so large and complex that it becomes difficult to

process using … traditional data processing applications.”
(Wikipedia)

“Any collection of data sets so large that it becomes difficult to process

using traditional MATLAB functions, which assume all of the data is in

memory.”
(MATLAB)

5

How big is big?

The Large Hadron Collider reached peak

performance on 29 June 2016

 2076 bunches of 120 billion protons currently

circulating in each direction

 ~1.6x1014 collisions per week, >30 petabytes of

data per year

 too big to even store in one place

 used to explore interesting science, but taking

researchers a long time to get through

In 1085 William 1st commissioned a survey

of England

 ~2 million words and figures collected over two

years

 too big to handle in one piece

 collected and summarized in regional pieces

 used to generate revenue (tax), but most of the

data then sat unused

Image courtesy of CERN.

Copyright 2011 CERN.

6

How big is big?

Most of our data lies somewhere in between the extremes

 >10GB might be too much for one laptop / desktop (“inconveniently large”)

7

Big problems

So what’s the big problem?

 Standard tools won’t work

 Getting the data is hard; processing it is even harder

 Need to learn new tools and new coding styles

 Have to rewrite algorithms, often at a lower level of abstraction

We want to let you:

 Prototype algorithms quickly using small data

 Scale up to huge data-sets running on large clusters

 Use the same MATLAB code for both

8

New solution starting in R2016b: tall arrays

Quick overview (detail later!):

 Treat data in multiple files as one large table/array

 Write normal array / table code

 Behind the scenes operate on pieces

tall array

9

Agenda

• Introduction

• Remote Arrays in MATLAB

• Tall Arrays for Big Data

• Scaling up

• Summary

10

Remote arrays in MATLAB

MATLAB provides array types for data that is not in “normal” memory

distributed array
(since R2006b)

Data lives in the combined memory of a

cluster of computers

gpuArray
(since R2010b)

Data lives in the memory of the GPU card

tall array
(since R2016b)

Data lives on disk, maybe spread across

many disks (distributed file-system)

11

Normal array – calculation happens in main memory:

Remote arrays in MATLAB

Rule: take the calculation to where the data is

x = rand(...)

x_norm = (x – mean(x)) ./ std(x)

12

Remote arrays in MATLAB

gpuArray – all calculation happens on the GPU:

x = gpuArray(...)

x_norm = (x – mean(x)) ./ std(x)

Rule: take the calculation to where the data is

distributed – calculation is spread across the cluster:

x = distributed(...)

x_norm = (x – mean(x)) ./ std(x)

tall – calculation is performed by stepping through files:

x = tall(...)

x_norm = (x – mean(x)) ./ std(x)

13

Agenda

• Introduction

• Remote Arrays in MATLAB

• Tall Arrays for Big Data

• Scaling up

• Summary

14

tall arrays (new)

 MATLAB data-type for data that doesn’t fit into memory

 Ideal for lots of observations, few variables (hence “tall”)

 Looks like a normal MATLAB array

– Supports numeric types, tables, datetimes, categoricals, strings, etc.

– Basic maths, stats, indexing, etc.

– Statistics and Machine Learning Toolbox support (clustering,

classification, etc.), Database Toolbox.

15

Cluster of

Machines

Memory

Single

Machine

Memory

 Data is in one or more files

 Typically tabular data

 Files stacked vertically

 Data doesn’t fit into memory

(even cluster memory)

tall arrays (new)

16

Cluster of

Machines

Memory

Single

Machine

Memory

 Use datastore to define file-list

 Allows access to small pieces of

data that fit in memory.

Datastore
ds = datastore('*.csv')

while hasdata(ds)

piece = read(ds);

% Process piece

end

tall arrays (new)

17

tall array

Cluster of

Machines

Memory

Single

Machine

Memory

 Create tall table from datastore

 Operate on whole tall table just like

ordinary table

 “Chunk” processing is handled

automatically

Datastore

ds = datastore('*.csv')

tt = tall(ds)

summary(tt)

max(tt.EndTime – tt.StartTime)

Single

Machine

MemoryProcess

tall arrays (new)

18

tall array

Cluster of

Machines

Memory

Single

Machine

Memory

 With Parallel Computing Toolbox,

process several “chunks” at once

 Can scale up to clusters with

MATLAB Distributed Computing

Server

Datastore

Single

Machine

MemoryProcess

Single

Machine

MemoryProcess

Single

Machine

MemoryProcess

Single

Machine

MemoryProcess

Single

Machine

MemoryProcess

Single

Machine

MemoryProcess

tall arrays (new)

19

Example: Working with Big Data in MATLAB

 Objective: Create a model to predict the cost of a taxi ride in New York City

 Inputs:

– Monthly taxi ride log files

– The local data set is small (~2 MB)

– The full data set is big (~25 GB)

 Approach:

– Preprocess and explore data

– Develop and validate predictive model (linear fit)

 Work with subset of data for prototyping

 Scale to full data set on HDFS

20

Example: Prototyping
Preview Data

>> ds = datastore('taxidataNYC_1_2015.csv');
>> preview(ds)

VendorID tpep_pickup_datetime tpep_dropoff_datetime passenger_count trip_distance pickup_longitude pickup_latitude
________ ____________________ _____________________ _______________ _____________ ________________ _______________

2 2015-01-10 02:24:04 2015-01-10 02:36:10 2 2.19 -73.999 40.729
1 2015-01-18 21:29:35 2015-01-18 21:34:15 1 1 -74.017 40.705
2 2015-01-23 18:23:02 2015-01-23 18:39:32 3 2.22 -73.973 40.787
1 2015-01-01 05:29:50 2015-01-01 05:48:55 1 3.6 -73.943 40.817
1 2015-01-18 00:06:42 2015-01-18 00:11:43 1 0.8 -73.983 40.762
2 2015-01-29 23:56:41 2015-01-30 00:02:49 5 0.87 -73.982 40.772
2 2015-01-05 16:58:24 2015-01-05 17:03:33 5 0.78 -73.992 40.743
1 2015-01-23 23:49:53 2015-01-23 23:55:42 2 1.4 -73.956 40.78

Description
 Location: New York City
 Date(s): (Partial) January 2015
 Data size: “small data” 13,693 rows / ~2 MB

21

Example: Prototyping
Create a Tall Array

>> tt = tall(ds)
tt =

M×19 tall table

VendorID tpep_pickup_datetime tpep_dropoff_datetime passenger_count trip_distance pickup_longitude pickup_latitude
________ ____________________ _____________________ _______________ _____________ ________________ _______________

2 2015-01-10 02:24:04 2015-01-10 02:36:10 2 2.19 -73.999 40.729
1 2015-01-18 21:29:35 2015-01-18 21:34:15 1 1 -74.017 40.705
2 2015-01-23 18:23:02 2015-01-23 18:39:32 3 2.22 -73.973 40.787
1 2015-01-01 05:29:50 2015-01-01 05:48:55 1 3.6 -73.943 40.817
1 2015-01-18 00:06:42 2015-01-18 00:11:43 1 0.8 -73.983 40.762
2 2015-01-29 23:56:41 2015-01-30 00:02:49 5 0.87 -73.982 40.772
2 2015-01-05 16:58:24 2015-01-05 17:03:33 5 0.78 -73.992 40.743
1 2015-01-23 23:49:53 2015-01-23 23:55:42 2 1.4 -73.956 40.78
: : : : : : :
: : : : : : :

Input data is

tabular – result

is a tall table

Number of rows is

unknown until all

the data has been

read

Only the first few

rows are displayed

22

Example: Prototyping
Calling Functions with a Tall Array

 Most results are evaluated only

when explicitly requested
(e.g., gather)

 MATLAB automatically

optimizes queued calculations

to minimize the number of

passes through the data

% Calculate average trip duration
mnTrip = mean(tt.trip_minutes,'omitnan')

mnTrip =

tall double

?

Preview deferred. Learn more.

% Execute commands and gather results into workspace
mn = gather(mnTrip)

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 4 sec
Evaluation completed in 4 sec

mn =

13.2763

Once the tall table is created, can process much like an ordinary table

23

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: 0% complete
Evaluation 0% complete

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 5 sec
Evaluation completed in 5 sec

% Remove some bad data
tt.trip_minutes = minutes(tt.tpep_dropoff_datetime -
tt.tpep_pickup_datetime);
tt.speed_mph = tt.trip_distance ./ (tt.trip_minutes ./ 60);
ignore = tt.trip_minutes <= 1 | ... % really short time

tt.trip_minutes >= 60 * 12 | ... % unfeasibly long time
tt.trip_distance <= 1 | ... % really short distance
tt.trip_distance >= 12 * 55 | ... % unfeasibly far
tt.speed_mph > 55 | ... % unfeasibly fast
tt.fare_amount < 0 | ... % negative fares?!
tt.fare_amount > 10000; % unfeasibly large fares

tt(ignore, :) = [];

% Credit card payments have the most accurate tip data
keep = tt.payment_type == {'Credit card'};
tt = tt(keep,:);

% Show tip distribution
histogram(tt.tip_amount, 0:25)

Data only read once,

despite 21 operations

Example: Prototyping
Calling Functions with a Tall Array

24

Example: Prototyping
Fit predictive model

% Fit predictive model
model = fitlm(ttTrain,'fare_amount ~ 1 + hr_of_day + trip_distance*trip_minutes')

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 5 sec
Evaluation completed in 5 sec

model =

Compact linear regression model:
fare_amount ~ 1 + hr_of_day + trip_distance*trip_minutes

Estimated Coefficients:
Estimate SE tStat pValue

__________ __________ ________ _______

(Intercept) 2.3432 0.040181 58.318 0
trip_distance 2.5841 0.0063898 404.41 0
hr_of_day -0.0012969 0.0018789 -0.69024 0.49005
trip_minutes 0.22098 0.0020412 108.26 0
trip_distance:trip_minutes -0.007857 0.00017539 -44.798 0

Number of observations: 42373, Error degrees of freedom: 42368
Root Mean Squared Error: 2.58
R-squared: 0.938, Adjusted R-Squared 0.938
F-statistic vs. constant model: 1.59e+05, p-value = 0

25

Example: Prototyping
Predict and validate model

% Predict and validate
yPred = predict(model,ttValidation);
residuals = yPred - ttValidation.fare_amount;
figure
histogram(residuals,'Normalization','pdf','BinLimits',[-50 50])

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 2: Completed in 5 sec
- Pass 2 of 2: Completed in 4 sec
Evaluation completed in 10 sec

26

Agenda

• Introduction

• Remote Arrays in MATLAB

• Tall Arrays for Big Data

• Scaling up

• Summary

27

Scale to the Entire Data Set

Description
 Location: New York City
 Date(s): All of 2015
 Data size: “Big Data” 150,000,000 rows / ~25 GB

28

Example: “small data” processing vs. Big Data processing

% Access the data
ds = datastore('taxidataNYC_1_2015.csv');
tt = tall(ds);

“small data” processing

% Access the data
ds = datastore('taxiData*.csv');
tt = tall(ds);

Big Data processing

% Access the data
ds = datastore('taxidataNYC_1_2015.csv');
tt = tall(ds);

% Access the data
ds = datastore('taxiData*.csv');
tt = tall(ds);

% Calculate average trip duration
mnTrip = mean(tt.trip_minutes,'omitnan')

% Execute commands and gather results into workspace
mn = gather(mnTrip)

% Remove some bad data
tt.trip_minutes = minutes(tt.tpep_dropoff_datetime -
tt.tpep_pickup_datetime);
tt.speed_mph = tt.trip_distance ./ (tt.trip_minutes ./ 60);
ignore = tt.trip_minutes <= 1 | ... % really short time

tt.trip_minutes >= 60 * 12 | ... % unfeasibly long time
tt.trip_distance <= 1 | ... % really short distance
tt.trip_distance >= 12 * 55 | ... % unfeasibly far
tt.speed_mph > 55 | ... % unfeasibly fast
tt.fare_amount < 0 | ... % negative fares?!
tt.fare_amount > 10000; % unfeasibly large fares

tt(ignore, :) = [];

% Calculate average trip duration
mnTrip = mean(tt.trip_minutes,'omitnan')

% Execute commands and gather results into workspace
mn = gather(mnTrip)

% Remove some bad data
tt.trip_minutes = minutes(tt.tpep_dropoff_datetime -
tt.tpep_pickup_datetime);
tt.speed_mph = tt.trip_distance ./ (tt.trip_minutes ./ 60);
ignore = tt.trip_minutes <= 1 | ... % really short time

tt.trip_minutes >= 60 * 12 | ... % unfeasibly long time
tt.trip_distance <= 1 | ... % really short distance
tt.trip_distance >= 12 * 55 | ... % unfeasibly far
tt.speed_mph > 55 | ... % unfeasibly fast
tt.fare_amount < 0 | ... % negative fares?!
tt.fare_amount > 10000; % unfeasibly large fares

tt(ignore, :) = [];

29

Scaling up

If you just have MATLAB:

 Run through each ‘chunk’ of data one by one

If you also have Parallel Computing Toolbox:

 Use all local cores to process several ‘chunks’ at once

If you also have a cluster with MATLAB Distributed

Computing Server (MDCS):

 Use the whole cluster to process many ‘chunks’ at once

30

Scaling up

Working with clusters from MATLAB desktop:

 General purpose MATLAB cluster

– Can co-exist with other MATLAB workloads (parfor,

parfeval, spmd, jobs and tasks, distributed arrays, …)

– Uses local memory and file caches on workers for efficiency

 Spark-enabled Hadoop clusters

– Data in HDFS

– Calculation is scheduled to be near data

– Uses Spark’s built-in memory and disk caching

31

Example: Running on Spark + Hadoop

% Hadoop/Spark Cluster
numWorkers = 16;

setenv('HADOOP_HOME', '/dev_env/cluster/hadoop');
setenv('SPARK_HOME', '/dev_env/cluster/spark');

cluster = parallel.cluster.Hadoop;
cluster.SparkProperties('spark.executor.instances') = num2str(numWorkers);
mr = mapreducer(cluster);

% Access the data
ds = datastore('hdfs://hadoop01:54310/datasets/taxiData/*.csv');
tt = tall(ds);

32

Example: Running on Spark + Hadoop

33

Agenda

• Introduction

• Remote Arrays in MATLAB

• Tall Arrays for Big Data

• Scaling up

• Summary

34

Summary for tall arrays

Process out-of-memory data on
your Desktop to explore,

analyze, gain insights and to

develop analytics

MATLAB Distributed Computing Server,

Spark+Hadoop

Local disk,

Shared folders,

Databases
or Spark + Hadoop (HDFS),

for large scale analysis

Use Parallel Computing

Toolbox for increased

performance

Run on Compute Clusters

35

Big Data capabilities in MATLAB

PROCESS AND ANALYZE

Purpose-built capabilities for domain

experts to work with big data locally

ACCESS

Access data and collections of files

that do not fit in memory

SCALE

Scale to compute clusters and

Hadoop/Spark for data stored in HDFS

Tall Arrays
• Math, Stats, Machine Learning on Spark

Distributed Arrays
• Matrix Math on Compute Clusters

MDCS for EC2
• Cloud-based Compute Cluster

MapReduce

MATLAB API for Spark

Tall Arrays
• Math

• Statistics

GPU Arrays
• Matrix Math

Deep Learning
• Image Classification

• Visualization

• Machine Learning

• Image Processing

Datastores

• Images

• Spreadsheets

• SQL

• Hadoop (HDFS)

• Tabular Text

• Custom Files

36

Summary

 MATLAB makes it easy, convenient, and scalable to work with big data

– Access any kind of big data from any file system

– Use tall arrays to process and analyze that data on your desktop, clusters, or on

Hadoop/Spark

There’s no need to learn big data programming or
out-of-memory techniques -- simply use the same

code and syntax you're already used to.

37

Questions

