
Simulink® Check™
Support Package for CI/CD Automation for Simulink®

Check™ User's Guide

R2024b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

CI/CD Automation for Simulink® Check™ User's Guide
© COPYRIGHT 2022-2024 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
September 2024 Online only New for Version 24.2 (R2024b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Run Tasks with Process Advisor
1

Automate and Run Tasks with Process Advisor . 1-2
View and Modify Default Process . 1-2
Run Tasks and Review Results . 1-6
Identify Impact of Changes . 1-8
Rerun Impacted Tasks with Incremental Build . 1-10
Export Build Report . 1-11
Explore Other Options . 1-11

Programmatically Run Tasks . 1-13
Run Pipeline of Tasks . 1-13
View Available Tasks Iterations . 1-14
Generate Build Report . 1-14

Specify Settings for Process Advisor and Build System 1-16
Project Settings . 1-16
User Settings . 1-18

Locally Reproduce Issues Found in CI . 1-20
Get Latest Project Files . 1-20
Download and Copy CI Artifacts into Project . 1-20
Debug in Process Advisor . 1-20

Customize Your Process Model
2

Modify Default Process Model to Fit Your Process 2-2
Open Project . 2-2
Create Process Model . 2-2
Inspect Default Process Model . 2-2
Section A — Add or Remove Built-In Tasks . 2-4
Section B — Modify Behavior of Built-In Tasks . 2-6
Section C — Specify Dependencies Between Tasks 2-7
Section D — Specify Preferred Task Execution Order 2-7

Overview of Process Model . 2-9
Process Model . 2-9
Tasks . 2-9
Queries . 2-11
Use Your Process . 2-12

iii

Contents

Add Tasks to Process . 2-13
Open Process Model . 2-13
Add Tasks . 2-13
Built-In Tasks . 2-14
Custom Tasks . 2-15

Reconfigure Task Behavior . 2-17
Open Process Model . 2-17
Task Inputs . 2-17
Task Action . 2-18
Task Iterations . 2-19

Define Task Relationships . 2-21
Open Process Model . 2-21
Specify Relationships . 2-21

Find Artifacts with Queries . 2-23
Built-In Queries . 2-23
Custom Queries . 2-25
Dynamically Resolve Paths with Tokens . 2-27

Create Custom Tasks . 2-28
Custom Task that Runs Existing Script . 2-28
Custom Task for Specialized Functionality . 2-29
Example Custom Tasks . 2-33

Create Custom Queries . 2-39
Choose Superclass for Custom Query . 2-39
Define and Use Custom Query in Process . 2-39
Example Custom Queries . 2-41

Group Tasks with Subprocesses . 2-46
Open Process Model . 2-46
Add Tasks to Specific Subprocess . 2-46
Considerations for Subprocess Boundaries . 2-47
Example Process Model with Subprocesses . 2-48

Manage Multiple Build and Verification Workflows Using Processes . . . 2-49
Open Process Model . 2-49
Overview of Processes . 2-49
Define New Processes . 2-50
Use Specific Process . 2-54

Best Practices for Process Model Authoring . 2-56
Keep Process Model File in Project Root . 2-56
Make Sure Only One Process Model File on Path 2-56
Review Untracked Dependencies . 2-56
Share Queries Across Tasks . 2-56

Exclude Files from Change Tracking in Process Advisor 2-59
Process Model . 2-59
Task Inputs . 2-60
Task Outputs . 2-60
Handling Untracked Dependencies . 2-62

iv Contents

Test Tasks and Queries . 2-63
Open Project . 2-63
Find Artifacts Using Query . 2-63
Run Task for Specific Artifacts . 2-64

Dry Run Tasks to Test Process Model . 2-66
Dry Run Tasks . 2-66
Dry Run Results . 2-66
Specify Dry Run Functionality for Tasks . 2-67

Troubleshoot Missing Tasks, Artifacts, and Dependencies 2-70
Artifact Issues . 2-70
Project Analysis Issues . 2-70
Limitations on Incremental Build . 2-72
Other Limitations . 2-73
Handling Invalid Dependencies . 2-74
Analyze Project From Scratch . 2-76

Integrate Process into CI
3

Approaches to Running Processes in CI . 3-2
Before You Integrate . 3-2
GitHub . 3-2
GitLab . 3-3
Jenkins . 3-3
Other Platforms . 3-4

Integrate Process into GitHub . 3-5
Set Up GitHub Project and Runner . 3-5
Connect MATLAB Project to GitHub . 3-5
Generate Pipeline Configuration File . 3-6
Use Pipeline Configuration File in GitHub Actions Workflow 3-6

Integrate Process into GitLab . 3-8
Set Up GitLab Project and Runner . 3-8
Connect MATLAB Project to GitLab . 3-9
Configure Template to use GitLab Runner . 3-9
Make Optional Customizations . 3-10
Generate Pipeline in GitLab . 3-11
Optional Customizations . 3-10

Integrate Process into Jenkins . 3-14
Set Up Jenkins . 3-14
Connect Jenkins Project to Repository . 3-15
Configure and Use Jenkinsfile Template . 3-15
Make Optional Customizations . 3-17
Generate Pipeline in Jenkins . 3-18

Integrate Process into Other CI Platforms . 3-19
Before You Integrate . 3-19
Run MATLAB in Batch Mode . 3-19

v

How Pipeline Generation Works . 3-21
Summary of Support . 3-21
Generated Pipelines . 3-22
Optional Pipeline Customization . 3-22
Parallel Pipeline Architectures . 3-24

Tips for Setting Up CI Agents . 3-28
Product Installation . 3-28
Dry Run Your Process . 3-28
Set Up Virtual Display Machines Without Displays 3-29
Create Docker Container for Support Package . 3-30

Best Practices for Effective Builds . 3-32
Use Incremental Builds for Regular Submissions 3-32
Run Full Builds for Qualifying Software . 3-32
Cache Models and Other Artifacts Used During Build 3-32

Version History
4

September 2024 . 4-2
Documentation . 4-2
Features . 4-2

July 2024 . 4-5
Features . 4-5

June 2024 . 4-7
Features . 4-7

May 2024 . 4-10
Features . 4-10

April 2024 . 4-13

March 2024 . 4-14
Features . 4-14

February 2024 . 4-20
Features . 4-20

December 2023 . 4-23

November 2023 . 4-25

October 2023 . 4-27

September 2023 . 4-29

August 2023 . 4-31

vi Contents

July 2023 . 4-32

June 2023 . 4-33

April 2023 . 4-36

March 2023 . 4-39

February 2023 . 4-40

December 2022 . 4-41

November 2022 . 4-42

October 2022 . 4-43

September 2022 . 4-44

August 2022 . 4-45

vii

Run Tasks with Process Advisor

• “Automate and Run Tasks with Process Advisor” on page 1-2
• “Programmatically Run Tasks” on page 1-13
• “Specify Settings for Process Advisor and Build System” on page 1-16
• “Locally Reproduce Issues Found in CI” on page 1-20

1

Automate and Run Tasks with Process Advisor
You can automate common tasks in your model-based development and verification workflow by using
the CI/CD Automation for Simulink Check support package. The support package contains a default
process model with built-in tasks for performing common activities such as checking modeling
standards with Model Advisor, running tests with Simulink Test™, and generating code with
Embedded Coder®. You can view, edit, and run these tasks from the Process Advisor app or run tasks
by using the Process Advisor function runprocess.

This example shows how to:

• View and modify the default process model to fit your development process.
• Run tasks and review results by using Process Advisor.
• Identify the impact of a change and incrementally rerun impacted tasks.
• Export a build report that summarizes the task results.

View and Modify Default Process
You can define development and verification processes for a project by using a script called a process
model. Process Advisor automatically reads the process model and uses the file to determine which
tasks to run, how the tasks perform their actions, and the order in which tasks run. If your project
does not already have a process model, Process Advisor automatically opens a default process model
file that uses built-in tasks to perform common model-based design activities. You can edit the
process model to add, remove, or reconfigure the tasks in the process. For information on how
Process Advisor generates pipelines of tasks based on the process model, tasks, and queries, see
“Overview of Process Model” on page 2-9.

1 Open a project that contains your files. If you do not have a project, see “Create Projects” or
open an example project by entering:

openExample('simulink/UsingAProjectExample')
2 Open Process Advisor. On the Project tab, in the Tools section, click Process Advisor or enter

processAdvisorWindow at the command line.

Process Advisor opens in a standalone window. If Process Advisor needs to perform an initial
analysis on your project, the app shows the Enable Artifact Tracing dialog box. Click Enable and
Continue.

The tasks defined in the process model appear in the Tasks column in Process Advisor. The
default process model contains built-in tasks for several common tasks like checking modeling
standards with Model Advisor, running tests with Simulink Test, and generating code with
Embedded Coder.

1 Run Tasks with Process Advisor

1-2

https://www.mathworks.com/matlabcentral/fileexchange/115220-ci-cd-automation-for-simulink-check

3 To view information about a task, point to the task in the Tasks column and click the information
icon .

4 You can add or remove tasks from the process by editing the process model. Inspect and edit the
process model by clicking the Edit button in the toolstrip. Process Advisor opens the process
model file, processmodel.m, in the MATLAB® Editor.

 Automate and Run Tasks with Process Advisor

1-3

You can add or remove built-in tasks from the process by setting the variable associated with a
built-in task to true or false. For example, to add the built-in task for design error detection to
your process, you can update the code to set includeDesignErrorDetectionTask to true.

%%%
%% Include/Exclude Tasks in processmodel
%%%

includeModelMaintainabilityMetricTask = true;
includeModelTestingMetricTask = true;
includeModelStandardsTask = true;
includeDesignErrorDetectionTask = true;
includeFindClones = true;
includeModelComparisonTask = false;
includeSDDTask = true;
includeSimulinkWebViewTask = true;
includeTestsPerTestCaseTask = true;
includeMergeTestResultsTask = true;
includeGenerateCodeTask = true;
includeAnalyzeModelCode = true && exist('polyspaceroot','file');
includeProveCodeQuality = true && (~isempty(ver('pscodeprover')) ...
 || ~isempty(ver('pscodeproverserver')));
includeCodeInspection = false;

Each variable is associated with a task in the default process model.

Variable in Default Process
Model

Task Title Built-In Task

includeModelMaintainabilit
yMetricTask

Collect Model Maintainability
Metrics

padv.builtin.task.CollectM
etrics

includeModelTestingMetricT
ask

Collect Model Testing Metrics padv.builtin.task.CollectM
etrics

includeModelStandardsTask Check Modeling Standards padv.builtin.task.RunModel
Standards

includeDesignErrorDetectio
nTask

Detect Design Errors padv.builtin.task.DetectDe
signErrors

includeFindClones Find Clones padv.builtin.task.FindClon
es

includeModelComparisonTask Generate Model Comparison padv.builtin.task.Generate
ModelComparison

includeSDDTask Generate SDD Report padv.builtin.task.Generate
SDDReport

includeSimulinkWebViewTask Generate Simulink Web View padv.builtin.task.Generate
SimulinkWebView

includeTestsPerTestCaseTas
k

Run Tests padv.builtin.task.RunTests
PerTestCase

includeMergeTestResultsTas
k

Merge Test Results padv.builtin.task.MergeTes
tResults

includeGenerateCodeTask Generate Code padv.builtin.task.Generate
Code

1 Run Tasks with Process Advisor

1-4

Variable in Default Process
Model

Task Title Built-In Task

includeAnalyzeModelCode Check Coding Standards padv.builtin.task.AnalyzeM
odelCode

includeProveCodeQuality Prove Code Quality padv.builtin.task.AnalyzeM
odelCode

includeCodeInspection Inspect Code padv.builtin.task.RunCodeI
nspection

For more information on how to get started with the default process model, see “Modify Default
Process Model to Fit Your Process” on page 2-2.

5 After you finish making changes to the process model, you can view the updated list of tasks in
Process Advisor by returning to the Process Advisor window and, in the warning banner, clicking
Refresh Tasks.

Process Advisor refreshes to reflect the updated process model. The Tasks column now includes
a task for Detect Design Errors.

6 You can view the source code for a built-in task by pointing to the task and clicking ... > Edit
Task.

Each built-in task has a default behavior, but you can reconfigure the task to perform differently by
specifying different property values for the task object in the process model. You can also create your
own custom tasks with custom behaviors. For more information, see “Customize Your Process Model”.

 Automate and Run Tasks with Process Advisor

1-5

Run Tasks and Review Results
You can run tasks either from the Process Advisor app or by using the Process Advisor function
runprocess.

1 To run a task on a specific artifact, you can point to that task iteration and click the run button.
In the Tasks column, under Collect Model Maintainability Metrics, point to the model name
AnalogControl and click the run button .

The Collect Model Maintainability Metrics task runs on the current model. Process Advisor
logs task activity in the MATLAB Command Window. When the task runs successfully, the status
in the Tasks column shows a green circle with a check mark . When you point to the status
icon, you can view details about the status, including the task status and how long the task took
to run.

2
If you point to the file icon in the I/O column, the pop-up shows hyperlinks to the outputs
from the task, and inputs and dependencies for the task. In the Details column, you can see that
the task successfully output a model maintainability report.

You can click the hyperlink to open and view the report.

1 Run Tasks with Process Advisor

1-6

If you want the task to generate a different report format, such as HTML, or to collect only
specific metrics, you can reconfigure the task to change the task behavior. For more information,
see “Customize Your Process Model”.

3 To view the metric results directly in the Model Maintainability Dashboard, you can point to the
task iteration, click ... > Open Dashboard.

The task automatically collects metric results that describe the size, complexity, and architecture
of the model and those metric results appear in the dashboard.

4 To run a task on each of the artifacts, point to the task title and click the run button . Collect
model maintainability metrics for each model in the project by clicking the run button for the
task Collect Model Maintainability Metrics.

Process Advisor highlights and runs the necessary task and the task iterations. If the Collect
Model Maintainability Metrics task depended on results from other tasks, Process Advisor
would automatically run those tasks first.

 Automate and Run Tasks with Process Advisor

1-7

Process Advisor aggregates the results of each task. In the Details column, Process Advisor
shows the number of passing, warning, or failing results:

• A green check mark indicates a passing result.
• An orange triangle indicates a warning result.
• A red "X" indicates a failing result.

In this example, the Collect Model Maintainability Metrics task successfully collected the
model maintainability metrics for 7 models, so the Details column shows a value of 7 next to the
green check mark for the task.

The task options menu and Process Advisor toolstrip have additional options for running each of the
tasks in your process, cleaning tasks to clear results and delete outputs, and other functionalities. For
more information, see Process Advisor.

Identify Impact of Changes
If you make a change to an artifact in your project, Process Advisor can detect the change and
automatically determine the impact of the change on your existing task results. For example, if you
make a change to an artifact or its dependencies, certain task results are no longer up to date.
Process Advisor can identify the impacted task results automatically and invalidate the task
completion by marking the task results as outdated.

1 Open the AnalogControl model in the project by clicking the model name in the Tasks column.
The artifact names shown in the Tasks column are hyperlinks to the artifacts.

1 Run Tasks with Process Advisor

1-8

Note that a model-specific view of Process Advisor is available in a pane to the left of the
Simulink canvas. You can use either view to interact with your tasks, but this example uses the
standalone window instead. For more information, see Process Advisor.

2 In Simulink, make a change to the AnalogControl model and save the model. For this example,
click and drag a block to a different part of the Simulink canvas, save, and close the model.

Process Advisor automatically detects the change to the project file and prompts you to refresh
the tasks by using the Refresh Tasks button in the warning banner.

3 View the updated task statuses in the standalone Process Advisor window by clicking Refresh
Tasks.

Process Advisor marks the task statuses for both the AnalogControl model and the
slproject_f14 model as outdated.

4
For the slproject_f14 task iteration, point to the file icon in the I/O column.

Process Advisor shows that the app marked the task results for slproject_f14 model as
outdated because the slproject_f14 references the AnalogControl model, which became
invalidated.

 Automate and Run Tasks with Process Advisor

1-9

Note There are limitations to the types of changes that the Process Advisor can detect. For more
information, see “Limitations on Incremental Build” on page 2-72. Note that the warning banner can
appear while you are running tasks or after you have finished running tasks, depending on when file
system events reach MATLAB.

Rerun Impacted Tasks with Incremental Build
By default, Process Advisor can rerun tasks with outdated results and automatically skip tasks that
are up to date. These incremental builds can help you reduce run times by reducing the number of
tasks that you need to rerun after making changes to your project artifacts to only rerun tasks that
were impacted by the change. The task status icons in the Tasks column indicate whether the task
results are up to date or outdated. Up to date task results have task status icons that are green for
tasks that pass and red for tasks that fail or generate errors. Outdated task results have task status
icons that are gray.

1 Get updated task results by rerunning the Collect Model Maintainability Metrics task. Point
to the task and click the run button.

Process Advisor automatically reruns the Collect Model Maintainability Metrics task for the
models with outdated results, AnalogControl and slproject_f14, and skips the other models
because those results are still up to date.

1 Run Tasks with Process Advisor

1-10

2 In the MATLAB Command Window, you can find a summary of which tasks were run or skipped at
the end of the log.

#####################
Ending Process Advisor build at 31-May-2024 17:45:05
Duration: 00:00:08
Build Status: Pass
Number of tasks: 7
Number of tasks executed: 2
Number of tasks skipped: 5
Number of tasks in queue: 0
Number of tasks failed: 0
Tasks that were skipped:(Status::Task::IterationArtifact)
Pass::padv.builtin.task.CollectMetrics::models/DigitalControl.slx
Pass::padv.builtin.task.CollectMetrics::models/LinearActuator.slx
Pass::padv.builtin.task.CollectMetrics::models/NonLinearActuator.slx
Pass::padv.builtin.task.CollectMetrics::models/f14_airframe.slx
Pass::padv.builtin.task.CollectMetrics::models/vertical_channel.slx
#####################

If you want Process Advisor to always force tasks to rerun, you can turn off incremental builds by
clicking Settings in the toolstrip and clearing the Incremental build check box. For more
information about settings, see “Specify Settings for Process Advisor and Build System” on page 1-
16.

Export Build Report
You can export a build report that summarizes the Process Advisor task statuses, task results, and
other information about the task execution.

In the Process Advisor toolstrip, in the Export section, click Report. In the Export Report dialog box,
you can specify options for the report an export a report for the current process by clicking Export.

Alternatively, you can programmatically generate a report by using
padv.ProcessAdvisorReportGenerator to specify options for the report and generateReport
to generate the report. For example:

rptObj = padv.ProcessAdvisorReportGenerator;
generateReport(rptObj)

For more information, see “Generate Build Report” on page 1-14.

Explore Other Options
You can use Process Advisor to automate and run tasks on your machine and deploy a consistent
development and verification process across your team. If you use source control and continuous
integration (CI) for your project, you can also use Process Advisor as part of your prequalification
process to make sure your team runs specific tasks before submitting their changes to source control.
Having a consistent process, defined by the process model, can help your team prevent build and test
failures in CI.

Use this table to find more information based on your goals.

 Automate and Run Tasks with Process Advisor

1-11

Goal Related Information
Learn more about the Process Advisor app. Process Advisor
Customize the pipeline of tasks by reconfiguring
the built-in tasks, removing tasks, and adding
custom tasks.

“Customize Your Process Model”

Integrate into a continuous integration (CI)
system.

“Integrate Process into CI”

Debug failures seen in CI. “Locally Reproduce Issues Found in CI” on page
1-20

See Also
Process Advisor | generateReport | runprocess

1 Run Tasks with Process Advisor

1-12

Programmatically Run Tasks
With the support package CI/CD Automation for Simulink Check, you can run the tasks in your
development and verification process by using the Process Advisor app on your local desktop or the
Process Advisor function runprocess. Both of these approaches invoke the same incremental build
system so that you can have consistent task execution across different environments like local
desktop machines and continuous integration (CI) agents. The build system is software that can
create the pipeline of tasks, efficiently execute tasks in the pipeline, and perform other actions
related to the pipeline.

This example shows how you can run tasks and generate a build report for a project
programmatically by using the runprocess function with other supporting functions. You can call
these commands on your local desktop and from CI agents. For information on running tasks with
Process Advisor, see Process Advisor.

Run Pipeline of Tasks
You can run tasks programmatically by using the runprocess function.

Run All Tasks

By default, if you use the runprocess function without specifying any name-value arguments,
runprocess(), the function runs each of the tasks associated with the current project and process
model. This behavior is equivalent to clicking the Run All button in the Process Advisor app.

To run each of the tasks associated with the current project and process, enter:

runprocess()

Run Specific Task

However, you often only want to run certain tasks or only run certain tasks on certain artifacts.

To only run a specific set of tasks, provide the task names to the Tasks argument. For example:

% run the Generate Simulink Web View task
% and the Check Modeling Standards tasks
runprocess(...
Tasks = ["padv.builtin.task.GenerateSimulinkWebView",...
"padv.builtin.task.RunModelStandards"])

Run Task Iterations for Specific Artifact

To only run the task iterations associated with a specific artifact, use the FilterArtifact
argument. For example, to run tasks for the AHRS_Voter model, you can specify the value as the
relative path to the model:

% run only the AHRS_Voter tasks
runprocess(...
FilterArtifact = fullfile(...
"02_Models","AHRS_Voter","specification","AHRS_Voter.slx"))

For more information, see the function runprocess.

 Programmatically Run Tasks

1-13

https://www.mathworks.com/matlabcentral/fileexchange/115220-ci-cd-automation-for-simulink-check

View Available Tasks Iterations
To return a list of the available task iterations in your current process, you can use the
generateProcessTasks function.

generateProcessTasks

You can include or exclude certain task iterations by using the name-value arguments of
generateProcessTasks. For example, to list the task iterations associated with a specific model,
you can specify the relative path to the model using a padv.Artifact object and pass that object to
the FilterArtifact argument for generateProcessTasks.

% specify the relative path to the model AHRS_Voter
model = padv.Artifact("sl_model_file",...
padv.util.ArtifactAddress(...
fullfile("02_Models","AHRS_Voter","specification","AHRS_Voter.slx")));

% find the tasks associated with the model AHRS_Voter
ahrsVoterTasks = generateProcessTasks(FilterArtifact=model)

Generate Build Report
You can generate a report that summarizes the build results for the tasks that you run in your
pipeline.

The report includes a:

• Summary of task statuses
• Summary of task results
• Details about the task configuration and execution

Generate Report After Running Process

To automatically generate a report after you run your process, specify the GenerateReport
argument of the runprocess function as true:

runprocess(GenerateReport = true)

By default, the report generates as a PDF file in the current working directory. You can use the
ReportFormat and ReportPath arguments to specify a different report format and a different
report name or full file path:

runprocess(GenerateReport = true,...
ReportFormat = "html-file",...
ReportPath = fullfile(pwd,"folderName","reportName"))

Generate Report from Recent Task Results

After you run the tasks in your pipeline, you can also generate a report using the most recent task
results.

After you run a task, create a padv.ProcessAdvisorReportGenerator report object.

rptObj = padv.ProcessAdvisorReportGenerator;

Run generateReport on the report object to generate a build report in the current directory.

1 Run Tasks with Process Advisor

1-14

generateReport(rptObj)

By default, the report generator generates a PDF. To generate an HTML report, specify the Format of
the ProcessAdvisorReportGenerator object as html-file.

htmlReport=padv.ProcessAdvisorReportGenerator(Format="html-file");
generateReport(htmlReport);

If you run the tasks in the default process model, the report provides an overview common
development and verification activities like the:

• Model Advisor analysis, including the number of passing, warning, and failing checks
• Test results, organized by iteration
• Generated code files
• Coding standards checks

For information on how to get started with the default process model, see “Modify Default Process
Model to Fit Your Process” on page 2-2.

See Also
generateProcessTasks | padv.Artifact | padv.util.ArtifactAddress | Process Advisor |
runprocess

Related Examples
• “Automate and Run Tasks with Process Advisor” on page 1-2
• “Best Practices for Effective Builds” on page 3-32
• “Integrate Process into CI”
• “Specify Settings for Process Advisor and Build System” on page 1-16

 Programmatically Run Tasks

1-15

Specify Settings for Process Advisor and Build System
With the CI/CD Automation for Simulink Check support package, you can run the tasks in your
development and verification process by using Process Advisor and its incremental build system.
There are several settings that you can use to customize how the Process Advisor app and
runprocess function run tasks, cache information, and log results. For example, you can use
settings to use incremental builds, enable model caching, and customize other behaviors.

You can access and change settings by clicking the Settings button in the Process Advisor toolstrip
and selecting or clearing the check boxes for individual settings.

There are two types of settings:

• “Project Settings” on page 1-16 — These settings are stored in the project and are shared with
everyone using this project.

• “User Settings” on page 1-18 — These settings only apply to the current user.

Project Settings
These settings are stored in the project and are shared with everyone using this project. For
additional settings and information, see padv.ProjectSettings.

1 Run Tasks with Process Advisor

1-16

https://www.mathworks.com/matlabcentral/fileexchange/115220-ci-cd-automation-for-simulink-check

Setting Usage
Incremental build Select this setting to allow the build system to

automatically detect changes and mark task
results as outdated.

By default, the build system and the Process
Advisor app perform incremental builds.
Incremental builds can help you reduce the
number of task iterations that you need to re-run
by identifying and running only the task
iterations with outdated results. If the task
iteration results are up-to-date, the build system
and the Process Advisor app skip the task
iteration.

When incremental builds are enabled, the task
status icons in the Tasks column indicate
whether the task results are up-to-date or
outdated. Up-to-date task results have task status
icons that are green for tasks that pass and red
for tasks that fail or generate errors. Outdated
task results have task status icons that are gray.

Default: On
Enable model caching Select this setting to allow the build system to

cache models during builds.

Default: Off

 Specify Settings for Process Advisor and Build System

1-17

Setting Usage
Suppress outputs to command window Select this setting to suppress the build log and

task execution messages in the MATLAB
Command Window. This setting only applies when
MATLAB is in interactive mode, not batch mode.

Default: Off
Show file extensions Select this setting to show file extensions for all

task iteration artifacts in the Tasks column in
Process Advisor.

To keep file extensions in the results for a specific
query, you can specify the query property
ShowFileExtension as true. For information,
see padv.Query.

Default: Off
Untracked dependency behavior Build system behavior when there are untracked

I/O files, specified as either:

• Allow — Do not generate warnings or errors
for untracked I/O files.

• Warn — Generate a warning if a task has
untracked I/O files.

• Error — Generate an error if a task has
untracked I/O files.

If you make a change to an untracked file,
Process Advisor and the build system do not mark
the task as outdated. For considerations and best
practices, see “Review Untracked Dependencies”
on page 2-56. For more information on
untracked files and change tracking, see
“Exclude Files from Change Tracking in Process
Advisor” on page 2-59.

Default: Warn

User Settings
These settings only apply to the current user. For additional settings and information, see
padv.UserSettings.

Setting Usage
Detect duplicate outputs Select this setting to allow the build system to

generate an error message when multiple tasks
attempt to write to the same output file.

Default: On

1 Run Tasks with Process Advisor

1-18

Setting Usage
Garbage collect task outputs Select this setting to allow the build system to

automatically clean task results for tasks and
artifacts that do not match the current process
model or project.

Default: On
Show detailed error messages Select this setting to allow the build system to

show more information in error messages. By
default, error messages from the build system are
not verbose.

Default: Off
Add process model as dependency Select this setting to add the process model file

as a dependency.

By default, if you make a change to the process
model file, the build system marks each task
status and task result as outdated because the
tasks in the updated process model might not
match the tasks that generated the task results
from the previous version of the process model.

If you do not want changes to the process model
to make task statuses and task results outdated,
clear this setting.

For more information on untracked files and
change tracking, see “Exclude Files from Change
Tracking in Process Advisor” on page 2-59.

Default: On

See Also
padv.ProjectSettings | padv.UserSettings | Process Advisor | runprocess

Related Examples
• “Automate and Run Tasks with Process Advisor” on page 1-2
• “Best Practices for Process Model Authoring” on page 2-56
• “Best Practices for Effective Builds” on page 3-32

 Specify Settings for Process Advisor and Build System

1-19

Locally Reproduce Issues Found in CI
With the CI/CD Automation for Simulink Check support package, you can run your process in CI,
download the job artifacts, and locally view the results in Process Advisor. If there were failures in CI,
you can use Process Advisor to debug and find issues in your artifacts that you need to fix on your
local machine. You can copy results from CI jobs onto your local machine by cloning a copy of the
project that you ran in CI and copying the latest job artifacts.

For information about how to run your process in CI, see “Integrate Process into CI”.

Get Latest Project Files
1 In MATLAB, get the latest project files by cloning a copy of the project onto your local machine.

For more information, see “Clone Git Repository in MATLAB”.
2 Close your local copy of the project. You must close the project before you attempt to copy CI

artifacts into the project folder.

Download and Copy CI Artifacts into Project
1 In your CI system, open the job that you want to inspect locally and download the artifacts that

the job generated. Job artifacts typically download as a ZIP file.

If you are using the pipeline generator, padv.pipeline.generatePipeline, the
Collect_Artifacts job automatically collects and compresses the build artifacts from your
pipeline into a ZIP file that you can download.

2 Close your local copy of the project if you have it open in MATLAB.
3 Extract the files from the ZIP file and copy the artifacts into the folder for your local copy of the

project. The copied artifacts do not need to be added to the MATLAB path or project path.
4 Open your local copy of the project in MATLAB.
5 Open the Process Advisor app. If you see a warning banner, click Refresh Tasks.

Debug in Process Advisor
After you refresh the tasks, you can use Process Advisor to:

• See the task results from the CI job in your local Process Advisor app
• Re-run tasks locally to reproduce the CI failure on your local machine
• Make changes to your project to fix the issues observed in CI
• Re-run tasks locally to confirm that you resolve open issues before submitting to source control

For more information, see “Automate and Run Tasks with Process Advisor” on page 1-2

Considerations for Parallel Code Generation

Starting in R2023b Update 5, the pipeline generator supports a round-trip, parallel CI workflow that
automatically merges the task statuses and project analysis from across the parallel branches. For
information, see “Parallel Pipeline Architectures” on page 3-24.

If you are using the pipeline generator in a previous release and you specify a parallel pipeline
architecture like IndependentModelPipelines, each parallel pipeline generates separate artifact

1 Run Tasks with Process Advisor

1-20

https://www.mathworks.com/matlabcentral/fileexchange/115220-ci-cd-automation-for-simulink-check

database files, artifacts.dmr, for each parallel branch. The build system and Process Advisor app
can only load one artifacts.dmr file at a time, so if you try to view the generated task statuses and
results on your local machine, you see incomplete or outdated task statuses.

See Also

Related Examples
• “Approaches to Running Processes in CI” on page 3-2
• “Clone Git Repository in MATLAB”
• “Integrate Process into GitHub” on page 3-5
• “Integrate Process into GitLab” on page 3-8
• “Integrate Process into Jenkins” on page 3-14
• “Integrate Process into Other CI Platforms” on page 3-19

 Locally Reproduce Issues Found in CI

1-21

Customize Your Process Model

2

Modify Default Process Model to Fit Your Process
With the CI/CD Automation for Simulink Check support package, you can define a consistent process
for your team by using a process model file. When your team has a standard process for local
prequalification and CI builds, you can efficiently enforce guidelines and make collaboration easier.
This example shows how to reconfigure the default process model to create a consistent, repeatable
process that you can deploy to your team. In this example, you take the default process model and
modify the tasks and queries to fit your requirements.

For more information about the process model, see “Overview of Process Model” on page 2-9.

Open Project
Open a project that contains your files. If you do not already have a project, you can create a project
as shown in “Create Projects”.

Create Process Model
You can create a process model for your project by using either the:

• Process Advisor app — When you open Process Advisor on a project that does not have a process
model, the app automatically copies the default process model into the project.

• createprocess function — You can use this function to access the different process model
templates, including a template for the default process model.

Inspect Default Process Model
Inspect the default process model by opening the Process Advisor app and clicking the Edit button

.

The default process model has four main sections that you can edit to fit your development and
verification workflow:

• “Section A — Add or Remove Built-In Tasks” on page 2-4
• “Section B — Modify Behavior of Built-In Tasks” on page 2-6
• “Section C — Specify Dependencies Between Tasks” on page 2-7
• “Section D — Specify Preferred Task Execution Order” on page 2-7

In the following diagram, the letters A, B, C, and D indicate the location of those sections in the
default process model.

2 Customize Your Process Model

2-2

https://www.mathworks.com/matlabcentral/fileexchange/115220-ci-cd-automation-for-simulink-check

 Modify Default Process Model to Fit Your Process

2-3

Section A — Add or Remove Built-In Tasks
The default process model adds several built-in tasks to the process, including tasks for collecting
metrics and running checks with Model Advisor. You can add or remove these built-in tasks from your
process by setting the variable associated with a built-in task to true or false in your process
model. For example, to have your process include the built-in task for generating Simulink model
comparisons, edit the process model to set includeModelComparisonTask to true.

%%%
%% Include/Exclude Tasks in processmodel
%%%

includeModelMaintainabilityMetricTask = true;
includeModelTestingMetricTask = true;
includeModelStandardsTask = true;
includeDesignErrorDetectionTask = false;
includeFindClones = true;
includeModelComparisonTask = true;
includeSDDTask = true;
includeSimulinkWebViewTask = true;
includeTestsPerTestCaseTask = true;
includeMergeTestResultsTask = true;
includeGenerateCodeTask = true;
includeAnalyzeModelCode = true && exist('polyspaceroot','file');

2 Customize Your Process Model

2-4

includeProveCodeQuality = true && (~isempty(ver('pscodeprover')) || ~isempty(ver('pscodeproverserver')));
includeCodeInspection = false;

Each variable is associated with a task in the default process model.

Variable in Default Process
Model

Task Title Built-In Task

includeModelMaintainability
MetricTask

Collect Model Maintainability
Metrics

padv.builtin.task.CollectMe
trics

includeModelTestingMetricTa
sk

Collect Model Testing Metrics padv.builtin.task.CollectMe
trics

includeModelStandardsTask Check Modeling Standards padv.builtin.task.RunModelS
tandards

includeDesignErrorDetection
Task

Detect Design Errors padv.builtin.task.DetectDes
ignErrors

includeFindClones Find Clones padv.builtin.task.FindClone
s

includeModelComparisonTask Generate Model Comparison padv.builtin.task.GenerateM
odelComparison

includeSDDTask Generate SDD Report padv.builtin.task.GenerateS
DDReport

includeSimulinkWebViewTask Generate Simulink Web View padv.builtin.task.GenerateS
imulinkWebView

includeTestsPerTestCaseTask Run Tests padv.builtin.task.RunTestsP
erTestCase

includeMergeTestResultsTask Merge Test Results padv.builtin.task.MergeTest
Results

includeGenerateCodeTask Generate Code padv.builtin.task.GenerateC
ode

includeAnalyzeModelCode Check Coding Standards padv.builtin.task.AnalyzeMo
delCode

includeProveCodeQuality Prove Code Quality padv.builtin.task.AnalyzeMo
delCode

includeCodeInspection Inspect Code padv.builtin.task.RunCodeIn
spection

The tasks that you add in the process model appear in the Tasks column in Process Advisor. In
addition to the built-in tasks, you can also add custom tasks to your process model. For more
information, see “Add Tasks to Process” on page 2-13.

 Modify Default Process Model to Fit Your Process

2-5

Section B — Modify Behavior of Built-In Tasks
The built-in tasks have default behaviors, but you can modify how a task performs its action by
reconfiguring the task object in the process model. For example, the built-in task
padv.builtin.task.RunModelStandards has a property ReportPath that specifies where the
task saves the output Model Advisor report. By default, the RunModelStandards task saves the
report in a subfolder named model_standards. The default process model reconfigures the task
object, maTask, to have the task save the Model Advisor report in a subfolder named
model_standards_results instead. You can modify other task behaviors by setting other task
object property values. For example, to have the task generate the Model Advisor report as a
Microsoft® Word document instead of HTML, set ReportFormat to "docx".

%%%
%% Register Tasks
%%%

%% Checking model standards on a model
if includeModelStandardsTask
 maTask = pm.addTask(padv.builtin.task.RunModelStandards());
 maTask.ReportPath = fullfile(...
 defaultResultPath,'model_standards_results');
 maTask.ReportFormat = "docx";
end

...

When you run the task in Process Advisor, the task performs its action using the behaviors that you
specified in the process model. You can view the results in the I/O column of Process Advisor. To see
other examples of how you can reconfigure tasks, inspect the default process model and see
“Reconfigure Task Behavior” on page 2-17.

2 Customize Your Process Model

2-6

Section C — Specify Dependencies Between Tasks
Typically in your development and verification workflow, you have tasks that need inputs or results
from other tasks in order to run successfully. In the process model, you specify these dependencies by
using the dependsOn method on the task object.

For example, the default process model adds the built-in tasks Generate Code and Check Coding
Standards to the process. Since you need to generate the code before you can analyze it, the default
process model specifies that if your process model contains both the code generation and code
analysis tasks, then the code analysis task object, psbfTask, needs to depend on the code generation
task object codegenTask.

%% Set Task Dependencies
 if includeGenerateCodeTask && includeAnalyzeModelCode
 psbfTask.dependsOn(codegenTask);
 end

If you open Process Advisor and point to the run button for the Check Coding Standards task,
Process Advisor highlights dependency on the Generate Code task. If you try to run the Check
Coding Standards task, the build system automatically runs the Generate Code task first. For more
information, see “Define Task Relationships” on page 2-21.

Section D — Specify Preferred Task Execution Order
Often there are tasks in your development and verification workflow that you want to run in a specific
order, even though the tasks do not depend on each other. To specify a preferred task execution order
for tasks that do not depend on each other, you can use the runsAfter method on the task object.

For example, the default process model specifies that the modeling standards task (maTask) should
run after the Simulink web view task (slwebTask). The modeling standards task does not depend on

 Modify Default Process Model to Fit Your Process

2-7

information from the Simulink web view task in order to run, but that is the preferred execution order
for the tasks in this particular process.

%% Set Task Run-Order
if includeModelStandardsTask && includeSimulinkWebViewTask
 maTask.runsAfter(slwebTask);
end

In Process Advisor, the Check Modeling Standards task appears after the Generate Simulink
Web View task in the Tasks column. For more information on task ordering, see “Define Task
Relationships” on page 2-21.

See Also
padv.ProcessModel

Related Examples
• “Automate and Run Tasks with Process Advisor” on page 1-2
• “Overview of Process Model” on page 2-9

2 Customize Your Process Model

2-8

Overview of Process Model
You can define a repeatable development and verification process for your team by using the support
package CI/CD Automation for Simulink Check. You define your process inside a process model. A
process model is a MATLAB file that specifies the tasks that you want to perform and dependencies
between those tasks. The support package has built-in tasks that you can add to your process to
perform common activities like running Model Advisor checks, generating code, and running tests.
But you can also create and add your own custom tasks to your process. To specify which artifacts
your tasks iterate over or use as task inputs, you can use built-in and custom queries to automatically
find certain types of artifacts.

To get started with the default process model, see “Modify Default Process Model to Fit Your Process”
on page 2-2.

Process Model
You define your process by using a process model file. A process model file accepts one argument, a
padv.ProcessModel object. You define your process by modifying the padv.ProcessModel object
and related objects.

function processmodel(pm)

 arguments
 pm padv.ProcessModel
 end

end

The process model file for your project must:

• Be on the MATLAB path.
• Have the file name processmodel.m or processmodel.p.

Tasks
In the process model, you add the tasks that you want to perform as part of your process. A task
represents an individual step in the process. Tasks can take artifacts as inputs, perform specific
actions, generates assessments, and return artifacts as outputs.

 Overview of Process Model

2-9

https://www.mathworks.com/matlabcentral/fileexchange/115220-ci-cd-automation-for-simulink-check

You add tasks to your process by using the addTask object function on the padv.ProcessModel
object.

You can add:

• “Built-In Tasks” on page 2-14 for common activities like checking modeling standards,
generating code, and running tests. The classes that define the built-in tasks are in the
padv.builtin.task namespace.

• “Custom Tasks” on page 2-15 for your own customized task behavior. Your custom tasks can
inherit from one of the built-in task classes or the padv.Task superclass.

For example, to add the built-in task for checking modeling standards with Model Advisor, you pass
the task name or task instance to the addTask object function. addTask returns a task object that
you can use to reconfigure the task behavior for the current process.

function processmodel(pm)

 arguments
 pm padv.ProcessModel
 end

 % Add Task
 modelAdvisorTask = pm.addTask(padv.builtin.task.RunModelStandards);

end

In Process Advisor, the Tasks column shows the task and the artifacts that the task iterates over. By
default, the built-in task RunModelStandards runs once for each model in the project. But you can
reconfigure how often the task runs and other task behaviors.

For more information, see:

• “Add Tasks to Process” on page 2-13
• “Reconfigure Task Behavior” on page 2-17

2 Customize Your Process Model

2-10

• “Define Task Relationships” on page 2-21

Queries
You can find and use artifacts in your project by using queries. A query can automatically find
artifacts in your project based on search criteria like the artifact type, project label, file path, and
other characteristics. You can use queries in your process model to automatically find the relevant
artifacts for your tasks without needing to manually update a static list of files.

In Process Advisor, the Tasks column shows the artifacts that a task iterates over. When you point to
task results in the I/O column, you can see the task inputs and input dependencies.

You can reconfigure a task to iterate over different artifacts or use different task inputs by specifying
a different query for the associated task property:

• IterationQuery — Determines how often a task runs by finding the artifacts that the task
iterates over

• InputQueries — Finds inputs for the task
• InputDependencyQuery — Finds additional dependencies related to the inputs

For each task in your process, the build system runs the task IterationQuery to determine which
artifacts the task iterates over. The build system then creates a task iteration, runs any additional
queries the task needs, runs the task, and saves the task results. Although tasks iterate over artifacts,
tasks do not automatically use those artifacts as inputs unless those artifacts are specified by the task
input queries. For each task iteration, the build system runs the InputQueries to find the inputs for
that specific task iteration. For each input, the build system runs the InputDependencyQuery to

 Overview of Process Model

2-11

find additional dependencies that can impact if task results are up-to-date. The task automatically
becomes outdated if you make a change to any of the task inputs or input dependencies.

You can specify these task properties and other process modeling properties by using:

• “Built-In Queries” on page 2-23 to find artifacts like models, test cases, and requirements. The
classes that define the built-in queries are in the padv.builtin.query namespace.

• “Custom Queries” on page 2-25 to find artifacts that are not covered by the built-in queries.

For information on how to reconfigure tasks to use different artifacts, see “Reconfigure Task
Behavior” on page 2-17.

Use Your Process
When you are ready to run your process, you do not manually run the process model file. Instead, you
use the Process Advisor app or the runprocess function. The Process Advisor build system
automatically loads your process model, analyzes your project, and creates your pipeline of tasks. For
more information, see “Automate and Run Tasks with Process Advisor” on page 1-2 and
“Programmatically Run Tasks” on page 1-13.

See Also
Process Advisor | runprocess

Related Examples
• “Automate and Run Tasks with Process Advisor” on page 1-2
• “Modify Default Process Model to Fit Your Process” on page 2-2
• “Programmatically Run Tasks” on page 1-13

2 Customize Your Process Model

2-12

Add Tasks to Process
With the CI/CD Automation for Simulink Check support package, you can define a development and
verification process for your team by creating a process model and adding tasks for the steps that you
want to perform as part of your process. In the process model, you add the tasks that you want to
perform as part of your process. A task represents an individual step in the process. Tasks can take
artifacts as inputs, perform specific actions, generates assessments, and return artifacts as outputs.

Open Process Model
You can add tasks to your process by editing the process model file for your project. If you do not
have a project or process model, see “Automate and Run Tasks with Process Advisor” on page 1-2 to
get started.

1 Open the project that contains your files.
2 Open Process Advisor. On the Project tab, in the Tools section, click Process Advisor.
3 Edit the process model by clicking the Edit button in the toolstrip.

Add Tasks
You add tasks to your process model by using the addTask object function on the
padv.ProcessModel object. You can add:

• “Built-In Tasks” on page 2-14 for common activities like checking modeling standards,
generating code, and running tests.

• “Custom Tasks” on page 2-15 for your own customized task behavior.

For example, the following process model adds the built-in task
padv.builtin.task.RunModelStandards to the default process.

function processmodel(pm)
 arguments
 pm padv.ProcessModel
 end

 % Adding a built-in task
 modelAdvisorTask = pm.addTask(padv.builtin.task.RunModelStandards);

end

You can add multiple tasks to your process model, including multiple instances of the same task.
However, each task object in your process must have a unique name specified by the Name property.

 Add Tasks to Process

2-13

https://www.mathworks.com/matlabcentral/fileexchange/115220-ci-cd-automation-for-simulink-check

By default, tasks perform an action with a default behavior, but you can reconfigure the task behavior
from inside the process model to change configuration files the task uses, output report file types,
and other behaviors. For more information, see “Reconfigure Task Behavior” on page 2-17.

In Process Advisor, the Tasks column shows the task and the artifacts that the task iterates over.

Built-In Tasks
The support package has built-in tasks for common activities like checking modeling standards,
generating code, and running tests. The classes that define the built-in tasks are in the
padv.builtin.task namespace. To view the source code for a built-in task, use the open function.

Goal Task Title Built-In Task Required Product Requires Display
Model Reports Generate SDD

Report
padv.builtin.t
ask.GenerateSD
DReport

Simulink Report
Generator™

Yes. For more
information, see
“Set Up Virtual
Display Machines
Without Displays”
on page 3-29.

Generate
Simulink Web
View

padv.builtin.t
ask.GenerateSi
mulinkWebView

Generate Model
Comparison

padv.builtin.t
ask.GenerateMo
delComparison

Simulink

Model Analysis Check Modeling
Standards

padv.builtin.t
ask.RunModelSt
andards

Simulink Check No

Detect Design
Errors

padv.builtin.t
ask.DetectDesi
gnErrors

Simulink Design
Verifier™

Testing and
Coverage

Merge Test
Results

padv.builtin.t
ask.MergeTestR
esults

Simulink Test

Run Tests padv.builtin.t
ask.RunTestsPe
rModel

2 Customize Your Process Model

2-14

Goal Task Title Built-In Task Required Product Requires Display
Run Tests padv.builtin.t

ask.RunTestsPe
rTestCase

Model Design and
Testing Metrics

Collect Metrics padv.builtin.t
ask.CollectMet
rics

Simulink Check

Code Generation Generate Code padv.builtin.t
ask.GenerateCo
de

Embedded Coder

Code Analysis Check Coding
Standards or
Prove Code
Quality

padv.builtin.t
ask.AnalyzeMod
elCode

Polyspace® Bug
Finder™ or
Polyspace Code
Prover™

Inspect Code padv.builtin.t
ask.RunCodeIns
pection

Simulink Code
Inspector™

Custom Tasks
If you need to perform steps that are not covered by the built-in tasks, you can create and add custom
tasks to your process model.

For example, consider the following process model that adds a custom task named "RunMyScript"
to run a script, myScript.m, and generate a result for Process Advisor. You define the action that the
custom task performs by using the Action argument for the addTask method.

function processmodel(pm)

 arguments
 pm padv.ProcessModel
 end

 % Add custom task
 pm.addTask("RunMyScript", Action = @runMyScript);

end

% Define action that custom task performs
function taskResult = runMyScript(~)
 run("myScript.m");
 taskResult = padv.TaskResult;
end

However, for more complex tasks, you want to define your custom task in a separate class that
inherits from one of the built-in task classes or from the padv.Task superclass. For more
information, see “Create Custom Tasks” on page 2-28.

See Also
addTask

 Add Tasks to Process

2-15

Related Examples
• “Overview of Process Model” on page 2-9
• “Reconfigure Task Behavior” on page 2-17

2 Customize Your Process Model

2-16

Reconfigure Task Behavior
With the CI/CD Automation for Simulink Check support package, you can define a development and
verification process for your team by adding tasks to your process model and reconfiguring the task
behavior to meet the needs of your specific process.

You can modify the behavior of a task by overriding the values of the task properties in the process
model. You can use the task properties to control the:

• “Task Inputs” on page 2-17
• “Task Action” on page 2-18
• “Task Iterations” on page 2-19

If you do not have a process model for your team, you can get started by using the default process
model as shown in “Modify Default Process Model to Fit Your Process” on page 2-2.

Open Process Model
You can reconfigure task behavior for your project and process by editing the process model file for
the project. If you do not have a project or process model, see “Automate and Run Tasks with Process
Advisor” on page 1-2 to get started.

1 Open the project that contains your files.
2 Open Process Advisor. On the Project tab, in the Tools section, click Process Advisor.
3 Edit the process model by clicking the Edit button in the toolstrip.

Alternatively, for custom tasks, you can specify the task property values directly in your class
definition file. For more information, see “Create Custom Tasks” on page 2-28.

Task Inputs
The InputQueries property of a task defines the task inputs. If you want to provide additional
inputs to a task, you can add queries to the InputQueries property of the task by using the
addInputQueries method on the task object in the process model. For each task in the process,
Process Advisor runs the InputQueries property of the task to find the input artifacts. For each
input artifact, Process Advisor also runs the InputDependencyQuery property of the task to find
additional dependencies that can impact whether task results are up-to-date. Queries find artifacts in
your project based on search criteria like the artifact type, project label, file path, and other
characteristics. For more information, see “Find Artifacts with Queries” on page 2-23.

For example, if you want the Check Modeling Standards task to run the Model Advisor checks
specified by a Model Advisor configuration file, sampleChecks.json, you can add this file as an
input to the task. This allows the task to use the file as an input, recognize changes to the file, and
update the task status if the file changes. The task automatically becomes outdated if you make a
change to any of the task inputs or input dependencies.

 maTask = pm.addTask(padv.builtin.task.RunModelStandards());
 % Specify which Model Advisor configuration file to run
 maTask.addInputQueries(padv.builtin.query.FindFileWithAddress(...
 Type = 'ma_config_file',...
 Path = fullfile('tools','sampleChecks.json')));

 Reconfigure Task Behavior

2-17

https://www.mathworks.com/matlabcentral/fileexchange/115220-ci-cd-automation-for-simulink-check

When you run the task in Process Advisor and point to the task results in the I/O column, you can see
the task Inputs and the additional input Dependencies.

Using Task Outputs as Task Inputs

If you want a task to use the outputs from a previous task:

• Specify a dependsOn relationship between the two tasks
• Update the InputQueries property of the downstream task to use the query

padv.builtin.query.GetOutputsOfDependentTask as one of the input queries

For example, the built-in task MergeTestResults requires outputs from the built-in task
RunTestsPerTestCase. In the process model, you must specify a dependency between these tasks
by using the dependsOn function. For example:

mergeTestTask.dependsOn(milTask, "WhenStatus",{'Pass','Fail'});

If you open the source code for the built-in task MergeTestResults, you can see that the task uses
the built-in query GetOutputsOfDependentTask as an input query to find the outputs from the
RunTestsPerTestCase task.

...
options.InputQueries = [padv.builtin.query.GetIterationArtifact,...
 padv.builtin.query.GetOutputsOfDependentTask(...
 Task="padv.builtin.task.RunTestsPerTestCase")];
...

Task Action
Tasks have various properties that determine how they perform their task actions. For example, the
Check Modeling Standards task has properties such as CheckIDList, DisplayResults, and

2 Customize Your Process Model

2-18

ExtensiveAnalysis. When you run the RunModelStandards task, these properties specify the
input arguments for the function ModelAdvisor.run. For information on the built-in task classes
and their properties, see “Built-In Tasks” on page 2-14.

You can reconfigure how a task runs by specifying different values for these properties in the process
model. For example, for the Check Modeling Standards task, you can specify a list of Model
Advisor checks to run and the report format by setting the CheckIDList and ReportFormat
properties.

 maTask = pm.addTask(padv.builtin.task.RunModelStandards());
 % Specify which Model Advisor checks to run
 maTask.CheckIDList = {'mathworks.jmaab.db_0032','mathworks.jmaab.jc_0281'};
 % Specify report format
 maTask.ReportFormat = 'docx';

When you run the task in Process Advisor, the task runs the specified Model Advisor checks and
generates the Model Advisor report as a Microsoft Word document instead of an HTML file.

Task Iterations
The IterationQuery property of a task defines which artifacts a task iterates over and therefore
how often the task runs. For example, by default, the Check Modeling Standards task uses the
iteration query padv.builtin.query.FindModels to run one time for each model in the project.
Although tasks iterate over artifacts, tasks do not automatically use those artifacts as inputs unless
those artifacts are specified by the task input queries. Queries find artifacts in your project based on
search criteria like the artifact type, project label, file path, and other characteristics. For more
information, see “Find Artifacts with Queries” on page 2-23.

To change which artifacts a task iterates over, you can specify a different value for the
IterationQuery property. For example, to have the Check Modeling Standards task only iterate
over models that have Voter in their file path, you can modify the iteration query for the task.

 Reconfigure Task Behavior

2-19

 maTask = pm.addTask(padv.builtin.task.RunModelStandards());
 % Specify which set of artifacts to run for
 maTask.IterationQuery = ...
 padv.builtin.query.FindModels(IncludePath = 'Voter');

The task iterations appear below the task title in the Tasks column in Process Advisor. If the iteration
query does not return results, the task no longer appears in Process Advisor.

See Also
addInputQueries | addTask | padv.Task | Process Advisor | runprocess

Related Examples
• “Add Tasks to Process” on page 2-13
• “Create Custom Tasks” on page 2-28
• “Define Task Relationships” on page 2-21
• “Overview of Process Model” on page 2-9
• “Modify Default Process Model to Fit Your Process” on page 2-2

2 Customize Your Process Model

2-20

Define Task Relationships
With the CI/CD Automation for Simulink Check support package, you can define a development and
verification process for your team by adding tasks to your process model and reconfiguring the task
behavior to meet the needs of your specific process.

Typically, you have dependencies between your tasks or you want your tasks to run in a specific order.
In your process model, you can specify the relationship between tasks by using either the dependsOn
method or the runsAfter method.

• dependsOn specifies that a task depends on inputs or results from another task to run
successfully. When you run the downstream task, the build system automatically runs the
upstream task first.

• runsAfter specifies a preferred task execution order for tasks that do not depend on each other.
When both tasks are in the queue of tasks for the build system to run, the build system runs those
tasks in your preferred task execution order when possible.

Open Process Model
You can specify the relationships between tasks by editing the process model file for the project. If
you do not have a project or process model, see “Automate and Run Tasks with Process Advisor” on
page 1-2 to get started.

1 Open the project that contains your files.
2 Open Process Advisor. On the Project tab, in the Tools section, click Process Advisor.
3 Edit the process model by clicking the Edit button in the toolstrip.

Specify Relationships
Suppose you want to perform these tasks in the following order:

1 Check modeling standards with the built-in task RunModelStandards.
2 Generate code with the built-in task GenerateCode.
3 Inspect the generated code with the built-in task RunCodeInspection.

The following process model adds those tasks to the process model and specifies the relationships
between those tasks by using the runsAfter and dependsOn methods.

function processmodel(pm)

 arguments
 pm padv.ProcessModel
 end

 % Add Tasks
 modelAdvisorTask = pm.addTask(padv.builtin.task.RunModelStandards);
 generateCodeTask = pm.addTask(padv.builtin.task.GenerateCode);
 inspectCodeTask = pm.addTask(padv.builtin.task.RunCodeInspection);

 % Define Task Relationships
 generateCodeTask.runsAfter(modelAdvisorTask);
 inspectCodeTask.dependsOn(generateCodeTask);

 Define Task Relationships

2-21

https://www.mathworks.com/matlabcentral/fileexchange/115220-ci-cd-automation-for-simulink-check

end

The code generation task should run after the Model Advisor task because code generation does not
depend on the results or outputs from Model Advisor. The code inspection task depends on the
generated code to have code to inspect and cannot run successfully without the outputs from code
generation. In Process Advisor, if you point to the run button for a task that depends on another task,
Process Advisor highlights that dependency. If you run a downstream task, like Inspect Code, the
upstream dependencies, like Generate Code, run automatically.

See Also
dependsOn | padv.ProcessModel | padv.Task | Process Advisor | runprocess | runsAfter

Related Examples
• “Add Tasks to Process” on page 2-13
• “Overview of Process Model” on page 2-9
• “Modify Default Process Model to Fit Your Process” on page 2-2

2 Customize Your Process Model

2-22

Find Artifacts with Queries
With the CI/CD Automation for Simulink Check support package, you can define a development and
verification process for your team by adding tasks to your process model and using queries to find the
relevant artifacts for your tasks and process. There are built-in queries for finding common artifacts
like models, requirements, and test cases, but you can also create your own custom queries. Typically,
you use queries to find artifacts for your tasks to iterate over, use as task inputs, or use to find
additional artifacts that your task inputs depend on.

In Process Advisor, the Tasks column shows the artifacts that the task iterates over. When you point
to task results in the I/O column, you can see the task inputs and input dependencies. You define the
task iterations, inputs, and input dependencies by specifying the associated task properties using
queries.

Built-In Queries
The support package has built-in queries that can find specific sets of artifacts in your project. You
can use the queries when you define your process, but note that you can only use certain queries as
an input query (InputQueries) or iteration query (IterationQuery) for a task.

Query Returns Iteration Query Input Query
padv.builtin.query
.FindArtifacts

Artifacts that meet
specified criteria

✔ Only when the query
property InProject is
false.

 Find Artifacts with Queries

2-23

https://www.mathworks.com/matlabcentral/fileexchange/115220-ci-cd-automation-for-simulink-check

Query Returns Iteration Query Input Query
padv.builtin.query
.FindCodeForModel

Generated code files
and buildInfo.mat
for a model

✔ ✔

padv.builtin.query
.FindDesignModels

Units and components
in project

✔

padv.builtin.query
.FindExternalCodeC
ache

External code cache
files in project

 ✔

padv.builtin.query
.FindFileWithAddre
ss

File at the specified
address

Only when the query
property
TrackArtifacts is
true.

✔

padv.builtin.query
.FindFilesWithLabe
l

Files with specific
project label

✔

padv.builtin.query
.FindMAJustificati
onFileForModel

Find Model Advisor
justification files

✔ ✔

padv.builtin.query
.FindModels

Models ✔ Only when the query
property InProject is
false.

padv.builtin.query
.FindModelsWithLab
el

Models with specific
project label

✔

padv.builtin.query
.FindModelsWithTes
tCases

Models associated with
a test case

✔

padv.builtin.query
.FindProjectFile

Project file ✔ ✔

padv.builtin.query
.FindRefModels

Referenced models ✔

padv.builtin.query
.FindRequirements

Requirement sets ✔ Only when the query
property InProject is
false.

padv.builtin.query
.FindRequirementsF
orModel

Requirements
associated with model

✔ ✔

padv.builtin.query
.FindTestCasesForM
odel

Test cases associated
with model

✔ ✔

padv.builtin.query
.FindTopModels

Top models ✔ ✔

padv.builtin.query
.FindUnits

Units in the project ✔ ✔

2 Customize Your Process Model

2-24

Query Returns Iteration Query Input Query
padv.builtin.query
.GetDependentArtif
acts

Dependent artifacts for
artifact

 ✔

padv.builtin.query
.GetIterationArtif
act

Artifact that the task is
iterating over

 ✔

padv.builtin.query
.GetOutputsOfDepen
dentTask

Outputs from immediate
predecessor task

 ✔

Custom Queries
If you need to find artifacts that are not already covered by built-in queries, you can use custom
queries in your process model. Depending on what you want your custom query to do, there are
different approaches. For more information, see “Create Custom Queries” on page 2-39.

Valid Artifact Types

The support package creates a digital thread to monitor artifacts in your project and analyze their
relationships. The digital thread is a set of metadata that allows Process Advisor and its build system
to detect changes to the project and identify outdated task results. However, the digital thread only
tracks changes to specific types of artifacts shown below. If you use custom queries that return
unsupported artifact types, the digital thread cannot detect changes to those artifacts, which can
limit the ability of Process Advisor to identify outdated tasks results. To see a list of the files the
digital thread is tracking in your project, see “Find Artifacts that Digital Thread Tracks”.

The digital thread tracks the following types of artifacts. If an artifact in your project is represented
by a padv.Artifact object with any other artifact type, such as "other_file", changes to that
artifact do not cause tasks to become outdated.

Category Artifact Type Description
MATLAB "m_class" MATLAB class

"m_file" MATLAB file
"m_func" MATLAB function
"m_method" MATLAB class method
"m_property" MATLAB class property

Model Advisor "ma_config_file" Model Advisor configuration file
"ma_justification_file" Model Advisor justification file

Process Advisor "padv_dep_artifacts" Related artifacts that current
artifact depends on

"padv_output_file" Process Advisor output file
Project "project" Current project file
Requirements "mwreq_item" Requirement (since R2024b)

"sl_req" Requirement (for R2024a and
earlier)

 Find Artifacts with Queries

2-25

Category Artifact Type Description
"sl_req_file" Requirement file
"sl_req_table" Requirements Table

Stateflow® "sf_chart" Stateflow chart
"sf_graphical_fcn" Stateflow graphical function
"sf_group" Stateflow group
"sf_state" Stateflow state
"sf_state_transition_cha
rt"

Stateflow state transition chart

"sf_truth_table" Stateflow truth table
Simulink "sl_block_diagram" Block diagram

"sl_data_dictionary_file
"

Data dictionary file

"sl_embedded_matlab_fcn" MATLAB function
"sl_block_diagram" Block diagram
"sl_library_file" Library file
"sl_model_file" Simulink model file
"sl_protected_model_file
"

Protected Simulink model file

"sl_subsystem" Subsystem
"sl_subsystem_file" Subsystem file
"sl_subsystem" Subsystem

System Composer™ "zc_block_diagram" System Composer architecture
"zc_component" System Composer architecture

component
"zc_file" System Composer architecture

file
Tests "harness_info_file" Harness info file

"sl_harness_block_diagra
m"

Harness block diagram

"sl_harness_file" Test harness file
"sl_test_case" Simulink Test case
"sl_test_case_result" Simulink Test case result
"sl_test_file" Simulink Test file
"sl_test_iteration" Simulink Test iteration
"sl_test_iteration_resul
t"

Simulink Test iteration result

"sl_test_report_file" Simulink Test result report
"sl_test_result_file" Simulink Test result file

2 Customize Your Process Model

2-26

Category Artifact Type Description
"sl_test_resultset" Simulink Test result set
"sl_test_seq" Test Sequence
"sl_test_suite" Simulink Test suite
"sl_test_suite_result" Simulink Test suite result

Dynamically Resolve Paths with Tokens
To dynamically resolve paths for artifacts, directories, and other process information, you can use
tokens as placeholders. The default process model and built-in task source code use the following
tokens.

Token Description
$INPUTARTIFACT$ Input artifact for task
$ITERATIONARTIFACT$ Current artifact that the task is acting on
PWD Current working directory
$TIMESTAMP$ Current date and time in the format

'yyyy_mm_dd_HH_MM_ss'
$PROJECTROOT$ Root folder of project
$TASKNAME$ Task name or title
$DEFAULTOUTPUTDIR$ Default output directory for the process model
$ROOTITERATIONARTIFACT$ Root-level artifact for the iteration artifact

You can use these tokens in your process model, but note that:

• The output directory of a task cannot be $PROJECTROOT$.
• The pipeline generator, padv.pipeline.generatePipeline, does not support the tokens $PWD

$, $TIMESTAMP$, and $INPUTARTIFACT$.

Inside the run method and dryRun method for a task, you can resolve tokens to their absolute path
by using the resolvePath method. For example:

reportPath = convertStringsToChars(obj.resolvePath(obj.ReportPath));

See Also

Related Examples
• “Create Custom Queries” on page 2-39
• “Overview of Process Model” on page 2-9

 Find Artifacts with Queries

2-27

Create Custom Tasks
With the CI/CD Automation for Simulink Check support package, you can define a development and
verification process for your team by adding built-in and custom tasks to your process. The support
package contains several built-in tasks that you can reconfigure and use to perform steps in your
process, but if you need to perform other actions or always want to use a reconfigured version of a
built-in task, you can create and add custom tasks to your process model.

Depending on what you want your custom task to do, there are different approaches:

• For basic MATLAB script execution — Use the addTask function to create a new task and use the
Action argument to specify a function handle for a function that runs the script. See “Custom
Task that Runs Existing Script” on page 2-28.

• For more complex tasks — Create a MATLAB class that inherits from either one of the “Built-In
Tasks” on page 2-14 or the superclass padv.Task and then override class properties and methods
to fit your needs. See “Custom Task for Specialized Functionality” on page 2-29 and “Example
Custom Tasks” on page 2-33. To view the source code for a built-in task, use the open function.

To add custom tasks to your process, you need to edit the process model file for your project. If you
do not have a project or process model, see “Automate and Run Tasks with Process Advisor” on page
1-2 to get started.

Custom Task that Runs Existing Script
If your custom task only needs to run an existing MATLAB script, you can edit your process model to
specify which script to run by using the Action argument for the addTask function.

For example, suppose that you have a script, myScript.m, that you want a custom task to run. You
can use the addTask function to add a new task to your process model. The Action argument
specifies the function that the task runs. In your processmodel.m file, you can specify:

function processmodel(pm)
 % Defines the project's processmodel

 arguments
 pm padv.ProcessModel
 end

 addTask(pm,"RunMyScript", Action = @runMyScript);

end

function taskResult = runMyScript(~)
 run("myScript.m");
 taskResult = padv.TaskResult;
end

"RunMyScript" is the name for the new task. @runMyScript is the function handle for the function
that you define inside the processmodel.m file. padv.TaskResult defines the results for the task.

You can run the script as a task in Process Advisor.

2 Customize Your Process Model

2-28

https://www.mathworks.com/matlabcentral/fileexchange/115220-ci-cd-automation-for-simulink-check

Custom Task for Specialized Functionality
To create a task that performs a custom functionality, you need to:

1 Create a new MATLAB class.
2 Inherit from either a built-in task or the superclass padv.Task.
3 Specify the task name and, optionally, other task properties.
4 Keep or override the run method that defines the action that the task performs.

Create New MATLAB Class

Create a new MATLAB class in your project.

Note that namespaces can help you organize the class definition files for your custom tasks. For
example, in the root of your project you can create a folder +processLibrary with a subfolder
+task and save your class in that folder.

To share your custom tasks across multiple process models in different projects, consider creating a
referenced project that contains your folders and class definition files. Your main projects can then
use the referenced project as a shared process library.

Choose Superclass for Custom Task

Your MATLAB class can inherit from either:

• One of the “Built-In Tasks” on page 2-14 — Use this approach when there is a built-in task that is
similar to the custom task that you want to create. When you inherit from a built-in task, like
padv.builtin.task.RunModelStandards, your custom task inherits the functionality of that
task, but then you can override the properties and methods of the class to fit your needs. For
information on the built-in tasks, see “Built-In Tasks” on page 2-14.

• The superclass padv.Task — Use this approach if your custom task needs to perform a step that
is not similar to a built-in task. padv.Task is the base class of the built-in tasks, so you must
completely define the inputs, functionality, and outputs of the task.

If you are inheriting from a built-in task, you can replace the contents of your class file with the
following example code. The code inherits from the built-in task
padv.builtin.task.RunModelStandards, but you can replace those lines of code to inherit from
a different built-in task instead.

classdef MyCustomTask < padv.builtin.task.RunModelStandards
 % task definition goes here

 Create Custom Tasks

2-29

 methods
 function obj = MyCustomTask(options)
 arguments
 options.Name = "MyCustomTask";
 options.Title = "My Custom Task";
 end
 obj@padv.builtin.task.RunModelStandards(Name = options.Name);
 obj.Title = options.Title;
 end
 end
end

If you are inheriting from padv.Task, you can replace the contents of your class file with the
following example code. The code finds the models in the project by using the iteration query
padv.builtin.query.FindModels and specifies those models as task inputs by using the input
query padv.builtin.query.GetIterationArtifact. The code calls the constructor of the
superclass padv.Task. For information on superclass constructors, see “Design Subclass
Constructors”.

classdef MyCustomTask < padv.Task
 methods
 function obj = MyCustomTask(options)
 arguments
 % unique identifier for task
 options.Name = "MyCustomTask";
 % artifacts the task iterates over
 options.IterationQuery = "padv.builtin.query.FindModels";
 % input artifacts for the task
 options.InputQueries = "padv.builtin.query.GetIterationArtifact";
 % where the task outputs artifacts
 options.OutputDirectory = fullfile(...
 '$DEFAULTOUTPUTDIR$','my_custom_task_results');
 end

 % Calling constructor of superclass padv.Task
 obj@padv.Task(options.Name,...
 IterationQuery=options.IterationQuery,...
 InputQueries=options.InputQueries);
 obj.OutputDirectory = options.OutputDirectory;
 end

 function taskResult = run(obj,input)
 % "input" is a cell array of input artifacts
 % length(input) = number of input queries

 % class definition goes here

 % specify results from task using padv.TaskResult
 taskResult = padv.TaskResult;
 taskResult.Status = padv.TaskStatus.Pass;
 % taskResult.Status = padv.TaskStatus.Fail;
 % taskResult.Status = padv.TaskStatus.Error;
 end
 end
end

2 Customize Your Process Model

2-30

Specify Task Properties

Specify the Name property for your task and, optionally, other task properties.

You must specify a Name because the Name is the unique identifier for the task. Specifying other class
properties is optional, but can help you define the task behavior. The following table lists common
class properties that you often specify for a custom task. For information on other class properties,
see “Built-In Tasks” on page 2-14 or padv.Task. For information on how tasks and queries define
your process, see “Overview of Process Model” on page 2-9.

Property Description
Name (required) Unique identifier for task
IterationQuery Artifacts the task iterates over

By default, custom tasks run one time for the project.
InputQueries Inputs to the task
InputDependencyQuery Artifacts that the task inputs depend on

Typically, you specify InputDependencyQuery as
padv.builtin.query.GetDependentArtifacts to get the
dependent artifacts for each task input.

OutputDirectory Directory where the task outputs artifacts

If you do not specify OutputDirectory for a custom task, the
build system stores task outputs in the
DefaultOutputDirectory specified by
padv.ProcessModel.

Keep or Override run Method

The run method defines the action that your custom task performs. For examples of how to override
the run method, see “Example Custom Tasks” on page 2-33.

Make sure to use the same method signature as the class that you inherit from. In the method
signature, the input argument is a cell array that contains the input artifacts from your input
queries. Each element in input corresponds to each input query that you specify.

For example, if you only specify one input query, padv.builtin.query.GetIterationArtifact,
and you are iterating over each model in the project, you can use the first element of input,
input{1}, to perform an action on each model in the project:

 function taskResult = run(obj,input)
 % Before the task loads models,
 % save a list of the models that are already loaded.
 loadedModels = get_param(Simulink.allBlockDiagrams(),'Name');

 % identify model name
 % "input" is a cell array of input artifacts
 % First input query gets iteration artifact (a model)
 model = input{1}; % get padv.Artifact from first input query
 modelName = padv.util.getModelName(model);

 % Example task that loads model and displays information

 Create Custom Tasks

2-31

 load_system(modelName);
 disp(modelName);
 disp('Data Dictionaries:')
 disp(Simulink.data.dictionary.getOpenDictionaryPaths)

 % specify results from task using padv.TaskResult
 taskResult = padv.TaskResult;
 taskResult.Status = padv.TaskStatus.Pass;
 % taskResult.Status = padv.TaskStatus.Fail;
 % taskResult.Status = padv.TaskStatus.Error;

 % % Close models that were loaded by this task.
 padv.util.closeModelsLoadedByTask(...
 PreviouslyLoadedModels=loadedModels)
 end

The run method must return a padv.TaskResult object. Process Advisor uses the
padv.TaskResult object to assess the status of your custom task. The task result properties
Status, OutputPaths, and ResultValues correspond to the Tasks, I/O, and Details columns in
Process Advisor:

Example Code Appearance in Process Advisor
taskResult.Status = padv.TaskStatus.Pass

taskResult.Status = padv.TaskStatus.Fail

taskResult.Status = padv.TaskStatus.Error

taskResult.OutputPaths=string(...
 fullfile("PA_Results","myFile.txt"));

taskResult.ResultValues.Pass = 1;
taskResult.ResultValues.Warn = 2;
taskResult.ResultValues.Fail = 3;

2 Customize Your Process Model

2-32

Additionally, you can also override the dryRun method to specify how your custom task evaluates
task inputs and generates representative outputs for quick process model tests. For more
information, see “Dry Run Tasks to Test Process Model” on page 2-66.

Add Custom Task to Process

Add your custom task to your process model by using the addTask function. For example, to add a
custom task named MyCustomTask that is saved in a +task subfolder inside a +processLibrary
folder:

function processmodel(pm)
 % Defines the project's processmodel

 arguments
 pm padv.ProcessModel
 end

 addTask(pm,processLibrary.task.MyCustomTask);

end

The custom task appears in the Tasks column in Process Advisor.

Example Custom Tasks
Perform Post-Processing on Task Results

You can use custom tasks to perform pre-processing or post-processing actions. For example, suppose
you want to run Model Advisor and if checks generate a failure or a warning, you want the task to
fail. There are no built-in tasks that perform this exact functionality by default, but the built-in task
padv.builtin.task.RunModelStandards runs Model Advisor and the task fails if a check
generates a failure.

You can use a custom task to create your own version of
padv.builtin.task.RunModelStandards that overrides the results from the task to specify that
if a Model Advisor check returns a warning, the task should also fail.

This example shows a custom task that inherits from the built-in task
padv.builtin.task.RunModelStandards, overrides the input queries to use the file
sampleChecks.json as the Model Advisor configuration file, and extends the run method of the
built-in task to fail the task if Model Advisor returns warnings.

 Create Custom Tasks

2-33

classdef MyRunModelStandards < padv.builtin.task.RunModelStandards
 % RunModelStandards, but use my Model Advisor configuration file
 % and fail the task when there are warnings from Model Advisor checks

 methods
 function obj = MyRunModelStandards(options)

 arguments
 options.Name = "MyRunModelStandards";
 options.Title = "My Check Modeling Standards";
 end

 obj@padv.builtin.task.RunModelStandards(Name = options.Name);
 obj.Title = options.Title;
 % specify current model (iteration artifact) and
 % Model Advisor configuration file as inputs to the task
 obj.addInputQueries([padv.builtin.query.GetIterationArtifact,...
 padv.builtin.query.FindFileWithAddress(...
 Type = 'ma_config_file',...
 Path = fullfile('tools','sampleChecks.json'))]);

 end

 function taskResult = run(obj,input)

 % use RunModelStandards to run Model Advisor
 taskResult = run@padv.builtin.task.RunModelStandards(obj,input);
 % If checks for a model fail, then the status will be
 % set to fail.

 % But you can extend the built-in task to specify that
 % if checks for a model generate a warning, then the
 % task status will also be set to fail.
 if taskResult.ResultValues.Warn > 0
 taskResult.Status=padv.TaskStatus.Fail;
 end

 end

 end

end

Note In this example, the run method of the custom task extends the run method of the built-in task
by calling it from within the custom task run method. But you can also reimplement the run method
for a custom task to implement your own version of the run method. For more information and
common class designs, see “Modify Inherited Methods”.

Run Custom Task for Project

Suppose that you want to return a list of the data dictionaries in your project. There are no built-in
tasks that perform this functionality, so you can create a custom task that inherits directly from the
base class padv.Task and use the arguments to specify the behavior of the custom task.

2 Customize Your Process Model

2-34

classdef ListAllDataDictionaries < padv.Task

 methods
 function obj = ListAllDataDictionaries(options)

 arguments
 options.InputQueries = padv.builtin.query.FindArtifacts(...
 ArtifactType="sl_data_dictionary_file");
 options.Name = "ListAllDataDictionaries";
 end
 inputQueries = options.InputQueries;
 obj@padv.Task(options.Name, ...
 Title = "My Custom Task for SLDD files", ...
 InputQueries = inputQueries, ...
 DescriptionText = "My Custom Task for SLDD files", ...
 Licenses={});
 end

 function taskResult = run(~, input)
 % Print names of SLDDs
 disp([input{1}.Alias]')
 taskResult = padv.TaskResult;
 taskResult.Status = padv.TaskStatus.Pass;
 taskResult.ResultValues.Pass = 1;
 end
 end
end

In the custom task, you can find the data dictionaries in the project by using the query
padv.builtin.query.FindArtifacts and specifying the query as one of the InputQueries for
the task. In the run function, you can specify the action that the task performs and specify the task
results, in a format that Process Advisor can recognize, by using a padv.TaskResult object. The
input is a cell array of input artifacts that the build system automatically creates based on the
InputQueries that you specify. In this example, the first cell in input is an array of
padv.Artifact objects that represent the data dictionaries in the project. The disp function can
display the aliases of the data dictionaries in the MATLAB Command Window. When you specify the
task result Status, that sets the task status in the Tasks column in Process Advisor.
ResultValues.Pass sets the number of passing results in the Details column in Process Advisor.

Specify Tool for Custom Task

When you point to a task in the Process Advisor app, you can click the ellipsis (...) to view more
options. For built-in tasks, you have the option to launch a tool or multiple tools associated with the

 Create Custom Tasks

2-35

task. For example, the built-in task Check Modeling Standards allows you to directly open Model
Advisor for the model that the task iteration runs on.

You can associate a tool with the options menu for a task by specifying the property
LaunchToolAction as a function handle that launches that tool. For example, suppose you have a
custom task that runs on each model in the project and you want the task to launch Dependency
Analyzer for the model. For LaunchToolAction, specify the handle to a function that launches
Dependency Analyzer. The function that launches the tool has two inputs, obj and artifact, and
must return a result structure with the status of the tool launch action, ToolLaunched.

function processmodel(pm)
 % Defines the project's processmodel

 arguments
 pm padv.ProcessModel
 end

 customTask = addTask(pm,"MyCustomTask",...
 IterationQuery = padv.builtin.query.FindModels,...
 InputQueries = padv.builtin.query.GetIterationArtifact,...
 LaunchToolAction=@openDependencyAnalyzer);

end

function result = openDependencyAnalyzer(obj, artifact)
 result = struct('ToolLaunched', false);
 % handle non-model task iterations / abstract tasks
 if isempty(artifact)
 result.message = 'Open the tool for an artifact listed under the task title.';
 return;
 end
 % identify model name
 modelName = padv.util.getModelName(artifact);
 % open Dependency Analyzer for model
 depview(modelName)
 result.ToolLaunched = true;
end

Specify Inputs That Can Make Task Outdated

Suppose that you want to create a custom task that analyzes specific Excel® files in your project and
you want the task to become outdated when you make changes to those files. You can find the files by
using the built-in query padv.builtin.query.FindArtifacts. In this example, the task uses the
IncludePathRegex argument of the query to find Excel files (.xlsx) with file names that begin

2 Customize Your Process Model

2-36

with HLR_. The task uses that query to define the task iterations (IterationQuery) and task inputs
(InputQueries). The task iterates over these files and checks for the presence of specific sheets
named StepUp and StepDown. If the Excel file has those sheets, the task passes. Otherwise, the task
fails. The task automatically becomes outdated if you make a change to any of the Excel files that the
query finds.

classdef CheckExcelSheetNames < padv.Task
 methods
 function obj = CheckExcelSheetNames(options)
 arguments
 % unique identifier for task
 options.Name = "CheckExcelSheetNames";
 % artifacts the task iterates over
 % in this case, Excel files that begin with "HLR_"
 options.IterationQuery = padv.builtin.query.FindArtifacts(...
 IncludePathRegex = "HLR_.*\.xlsx");
 % input artifacts for the task
 % in this case, the same as the iteration artifacts
 options.InputQueries = "padv.builtin.query.GetIterationArtifact";
 % where the task outputs artifacts
 options.OutputDirectory = fullfile(...
 '$DEFAULTOUTPUTDIR$','excel_status_results');
 end
 % Calling constructor of superclass padv.Task
 obj@padv.Task(options.Name,...
 IterationQuery=options.IterationQuery,...
 InputQueries=options.InputQueries);
 obj.OutputDirectory = options.OutputDirectory;
 end
 function taskResult = run(obj,input)
 % specify results from task using padv.TaskResult
 taskResult = padv.TaskResult;
 % Get the sheet names for the sheets in the current spreadsheet
 % "input" is a cell array of task input artifacts
 a = input{1}.ArtifactAddress;
 fa = a.getFileAddress;
 sheets = sheetnames(fa);
 % Check if sheets for both "StepUp" and "StepDown" are present in
 % the spreadsheet
 if ismember("StepUp", sheets) && ismember("StepDown", sheets)
 disp('Both the "StepUp" and "StepDown" sheets are present.');
 taskResult.Status = padv.TaskStatus.Pass;
 else
 disp('Missing "StepUp" or "StepDown" sheets.');
 taskResult.Status = padv.TaskStatus.Fail;
 end
 end
 end
end

Ignore Changes to Specific Task Outputs

You can turn off change tracking for a specific artifact by specifying the Track property of the
artifact address as false. The artifact address is stored in the ArtifactAddress property of a
padv.Artifact object.

 Create Custom Tasks

2-37

For example, the following custom task inherits from the built-in task DetectDesignErrors, but
overrides the run method to turn off change tracking for the output report. The custom task
identifies the report by iterating over each task output, checking if the artifact has the same report
format as the task, and then specifying the Track property for the artifact address.

classdef MyDetectDesignErrors < padv.builtin.task.DetectDesignErrors
 % Detect design errors, but ignore changes to generated report files
 methods

 function obj = MyDetectDesignErrors(options)
 arguments
 options.Name = "MyDetectDesignErrors";
 options.Title = "My Detect Design Errors";
 end
 obj@padv.builtin.task.DetectDesignErrors(Name = options.Name);
 obj.Title = options.Title;
 end

 function taskResult = run(obj,input)

 % use DetectDesignErrors to run Design Verifier
 taskResult = run@padv.builtin.task.DetectDesignErrors(obj,input);

 % for each task output, check if it's a report
 for i = 1:length(taskResult.OutputArtifacts)
 artifact = taskResult.OutputArtifacts(i);
 artifactAddress = artifact.ArtifactAddress;
 fileAddress = artifactAddress.getFileAddress;
 if contains(fileAddress, obj.ReportFormat, IgnoreCase=true)
 % if the task output is a report, turn off change tracking for the report
 artifactAddress.Track = false;
 end
 end

 end
 end
end

For more information, see “Exclude Files from Change Tracking in Process Advisor” on page 2-59.

See Also
addTask | padv.ProcessModel | padv.Task | Process Advisor | runprocess

Related Examples
• “Add Tasks to Process” on page 2-13
• “Find Artifacts with Queries” on page 2-23
• “Overview of Process Model” on page 2-9
• “Modify Default Process Model to Fit Your Process” on page 2-2

2 Customize Your Process Model

2-38

Create Custom Queries
With the CI/CD Automation for Simulink Check support package, you can define a development and
verification process for your team by using a process model. You can use queries to find artifacts
relevant to your tasks and processes. The support package contains several built-in queries that you
can reconfigure and use to find artifacts in your project, but if you need to perform other actions or
always want to use a reconfigured version of a built-in query, you can create and add custom queries
to your process model.

To find artifacts in your project, you can use the built-in queries that ship with the support package or
you can create your own custom queries. Use the built-in queries where possible. If your use case
requires custom queries, use the following steps to create a custom query. Note that to reconfigure
the functionality of a built-in task, your custom queries can inherit from a built-in query.

After you create a custom query, you can use that query as an input query for a task to modify or filter
the task inputs.

Choose Superclass for Custom Query
There are two ways to define custom queries:

• Inherit from a built-in query — Use this approach when there is a built-in query that is similar to
the custom query that you want to create. When you inherit from a built-in query, like
padv.builtin.query.FindArtifacts, your custom query inherits the functionality of that
query, but then you can override the properties and methods of the class to fit your needs.

• Inherit from padv.Query — Use this approach if your custom query needs to find artifacts in a
way that is not similar to a built-in query. padv.Query is the base class of the built-in queries, so
you must completely define the functionality of the query.

Define and Use Custom Query in Process
1 Create a new MATLAB class in your project.

Tip Namespaces can help you organize the class definition files for your custom queries. In the
root of your project, create a folder +processLibrary with a subfolder +query and save your
class in that folder.

To share your custom queries across multiple process models in different projects, consider
creating a referenced project that contains your folders and class definition files. Your main
projects can then use the referenced project as a shared process library.

2 Use one of these approaches to define your custom query:

• If you are inheriting from a built-in query, you can replace the contents of your class file with
this example code:

classdef MyCustomQuery<padv.builtin.query.FindArtifacts
 % query definition goes in this class
 % by default, this query finds all artifacts in the project
 methods
 function obj = MyCustomQuery(NameValueArgs)
 arguments
 NameValueArgs.Name = "MyCustomQuery";

 Create Custom Queries

2-39

https://www.mathworks.com/matlabcentral/fileexchange/115220-ci-cd-automation-for-simulink-check

 end
 end
 end
end

This example query inherits from the built-in query padv.builtin.query.FindArtifacts,
but you can change that line of code to inherit from another built-in query. Use the properties
of the query to specify which sets of artifacts you want the query to return. If you want to
override the run method for a built-in query, check which input arguments the run method
for the built-in query accepts and use the same method signature inside your custom query.
For more information, see “Built-In Queries” on page 2-23.

• If you are inheriting from padv.Query, you can replace the contents of your class file with
this example code:

classdef MyCustomQuery < padv.Query

 methods
 function obj = MyCustomQuery(NameValueArgs)
 obj@padv.Query("MyCustomQuery");
 end

 function artifacts = run(obj,~)
 artifacts = padv.Artifact.empty;
 % Core functionality of the query goes here
 % artifacts = padv.Artifact(artifactType,...
 % padv.util.ArtifactAddress(fullfile(fileparts));

 end
 end
end

A query must have:

• a unique name, specified using the Name property
• a run function that returns either a padv.Artifact object or an array of

padv.Artifact objects. For more information, see padv.Artifact and “Example
Custom Queries” on page 2-41.

Note The digital thread only tracks changes to specific types of artifacts. For information on
supported artifact types, see “Valid Artifact Types” on page 2-25. If there is an artifact in your
project that the padv.builtin.query.FindArtifacts query does not find, the digital
thread cannot detect changes to that artifact. If you create custom queries that return
padv.Artifact objects with unsupported artifact types, the digital thread will not detect
changes to those artifacts. This behavior can impact whether changes to these artifacts cause
a task to be marked as outdated. To see a list of the files the digital thread is tracking in your
project, see “Find Artifacts that Digital Thread Tracks”.

3 You can test your custom query in the MATLAB Command Window executing the run function.
Note that your project needs to be open for the query to find artifacts. For example, for a query
MyCustomQuery saved in the namespace processLibrary.query:

run(processLibrary.query.MyCustomQuery)
4 You can use your custom query in your process model. For example, you can control which

artifacts a task iterates over by using your custom query as the iteration query for a task:

2 Customize Your Process Model

2-40

function processmodel(pm)
 % Defines the project's processmodel

 arguments
 pm padv.ProcessModel
 end

 t = addTask(pm,"MyCustomTask",...
 IterationQuery = processLibrary.query.MyCustomQuery);

end

This example assumes that you saved your class file in the +query folder inside the
+processLibrary folder.

5 You can confirm which artifacts your task iterates over by opening Process Advisor. In the
MATLAB Command Window, enter:

processAdvisorWindow

The artifacts that the task iterates over appear under the task name in the Tasks column.

Example Custom Queries
Run Task on Data Dictionaries in Project

Suppose you want to find each of the data dictionaries in your project. There are no built-in queries
that perform this functionality by default, but there is a built-in query
padv.builtin.query.FindArtifacts that can find artifacts that meet certain search criteria.
Effectively you can create your own version of the built-in query, but specialized to only find data
dictionaries. You can create a class-based, custom query that inherits from
padv.builtin.query.FindArtifacts and specifies the ArtifactType argument as a Simulink
data dictionary.

classdef FindSLDDs<padv.builtin.query.FindArtifacts
 %FindSLDDs This query is like FindArtifacts,
 % but only returns data dictionaries.
 methods
 function obj = FindSLDDs(NameValueArgs)

 Create Custom Queries

2-41

 arguments
 NameValueArgs.ArtifactType string = "sl_data_dictionary_file";
 NameValueArgs.Name = "FindSLDDs";
 end
 obj.ArtifactType = NameValueArgs.ArtifactType;
 end
 end
end

The example class FindSLDDs inherits its properties and run function from the built-in query
padv.builtin.query.FindArtifacts, but specifies a unique Name and ArtifactType. The
ArtifactType is specified as sl_data_dictionary_file because that is the artifact type
associated with Simulink data dictionary files. For a list of valid artifact types, see
padv.builtin.query.FindArtifacts.

You can have a task run once for each data dictionary in your project by using the custom query as
the iteration query for the task.

function processmodel(pm)
 % Defines the project's processmodel

 arguments
 pm padv.ProcessModel
 end

 t = addTask(pm,"MyCustomTask",...
 IterationQuery = processLibrary.query.FindSLDDs);

end

Sort Artifacts in Specific Order

By default, queries sort artifacts alphabetically by the artifact address. If you want your query to sort
artifacts in a different order, you can override the internal sortArtifacts method in a subclass that
defines a custom sort behavior. For example:

classdef FindFileSorted < padv.builtin.query.FindArtifacts
 methods
 function obj = FindFileSorted(options)

2 Customize Your Process Model

2-42

 arguments
 options.ArtifactType string
 options.IncludeLabel string
 options.ExcludeLabel string
 options.IncludePath string
 options.ExcludePath string
 options.InProject boolean
 options.FilterSubFileArtifacts boolean
 end
 fwdoptions = namedargs2cell(options);
 obj@padv.builtin.query.FindArtifacts(fwdoptions{:});
 end
 end
 methods(Access = protected)
 % Overload the default sort artifacts logic, in this case
 % Sorting artifacts based upon their string length rather than
 % Alphabetically
 function sortedArtifacts = sortArtifacts(~, artifacts)
 if isempty(artifacts)
 sortedArtifacts = artifacts;
 return;
 end
 namesToSort = arrayfun(@(art) art.ArtifactAddress.getFileAddress,artifacts);
 [~,idx] = sort(strlength(namesToSort));
 sortedArtifacts = artifacts(idx);
 end
 end
end

Note If you override sortArtifacts, make sure that your implementation only changes the order
of the artifacts, not the data type or structure. Do not use sortArtifacts to add or remove artifacts
from the query results.

Run Validation Scripts on Spreadsheets

Suppose that your project contains several Excel spreadsheets and that for each spreadsheet, you
have a validation script with the same name as the spreadsheet. You can find the validation scripts by
using a custom query and then you can run the validation script on each spreadsheet by using a
custom task. For example, the following example custom query searches through the artifacts in the
project to find if there are any scripts that have the same name as the iteration artifact.

classdef FindValidationFiles < padv.Query

 methods
 function obj = FindValidationFiles(NameValueArgs)
 arguments
 NameValueArgs.Name string = string.empty;
 NameValueArgs.Title string = "Find validation files";
 end

 obj@padv.Query(NameValueArgs.Name, Title=NameValueArgs.Title);

 % Named Query
 obj.CanBeUsedAsInputQuery = true;
 obj.CanBeUsedAsIterationQuery = true;

 Create Custom Queries

2-43

 end

 function paArtifact = run(~,iterationArtifact)
 paArtifact = padv.Artifact.empty;

 % Get Name of iteration artifact
 [~,name] = fileparts(iterationArtifact.ArtifactAddress.getFileAddress());
 % Find validation script with same name as iteration artifact
 validationFileName = strcat(name, ".m");
 filePath = which(validationFileName);
 if ~isempty(filePath)
 paArtifact = padv.Artifact("xls_validation_file",filePath);
 end
 end

 end
end

In the process model, you can add the custom query as an input query for your custom task so that if
you make a change to the validation script, the task iteration for that spreadsheet automatically
becomes outdated. For example, this example process model uses the built-in query FindArtifacts
to find the spreadsheets, specifies that a custom task named RunValidationScript must iterate
over each spreadsheet returned by the FindArtifacts query, and then adds the custom query as an
input query for the task.

function processmodel(pm)
 % Defines the project's processmodel

 arguments
 pm padv.ProcessModel
 end

 findSpreadsheets = padv.builtin.query.FindArtifacts(IncludePathRegex = "Spreadsheet.*\.xlsx");
 validationTask = pm.addTask(RunValidationScript(IterationQuery=findSpreadsheets));
 validationTask.addInputQueries(FindValidationFiles);

end

The validation task automatically becomes outdated if you make changes to the validation scripts
because you specified the custom query FindValidationFiles as an input query for the task.

2 Customize Your Process Model

2-44

See Also
padv.Artifact | padv.ProcessModel | padv.Query | Process Advisor | runprocess

Related Examples
• “Find Artifacts with Queries” on page 2-23
• “Overview of Process Model” on page 2-9
• “Modify Default Process Model to Fit Your Process” on page 2-2
• “Reconfigure Task Behavior” on page 2-17

 Create Custom Queries

2-45

Group Tasks with Subprocesses
With the CI/CD Automation for Simulink Check support package, you can define a development and
verification process for your team by using a process model. Within a process, you can use
subprocesses to group related tasks, create a hierarchy of tasks, and share parts of your overall
process. A subprocess is a self-contained sequence of tasks, inside a process or other subprocess, that
can run standalone.

Open Process Model
You can group tasks into subprocesses by editing the process model file for your project. If you do not
have a project or process model, see “Automate and Run Tasks with Process Advisor” on page 1-2 to
get started.

1 Open the project that contains your files.
2 Open Process Advisor. On the Project tab, in the Tools section, click Process Advisor.
3 Edit the process model by clicking the Edit button in the toolstrip.

Add Tasks to Specific Subprocess
To group the tasks in your process:

1 In the process model, you can add a subprocess by using addSubprocess on your process model
object.

spA = pm.addSubprocess("Subprocess A");
2 Instead of adding your tasks directly to your process model object, add your tasks to a specific

subprocess by using addTask.

tA1 = spA.addTask("Task A1");
tA2 = spA.addTask("Task A2");

3 You can use the dependsOn and runsAfter methods to define the relationships between tasks
and subprocesses in your process.

For example, the following process model defines a process in which Task 1 runs, then
Subprocess A, and then Subprocess B.

function processmodel(pm)
 % Defines the project's processmodel

2 Customize Your Process Model

2-46

https://www.mathworks.com/matlabcentral/fileexchange/115220-ci-cd-automation-for-simulink-check

 arguments
 pm padv.ProcessModel
 end

 t1 = pm.addTask("Task 1");

 spA = pm.addSubprocess("Subprocess A");
 tA1 = spA.addTask("Task A1");
 tA2 = spA.addTask("Task A2");
 spB = pm.addSubprocess("Subprocess B");
 tB1 = spB.addTask("Task B1");
 tB2 = spB.addTask("Task B2");

 % Relationships
 spA.dependsOn(t1);
 tA2.dependsOn(tA1);
 spB.dependsOn(spA);
 tB2.dependsOn(tB1);

end

The build system executes each of the tasks inside a subprocess before existing the subprocess.
The following diagram shows a graphical representation of the relationships defined by that
process model.

Considerations for Subprocess Boundaries
The relationships that you specify in the process model cannot cross any subprocess boundaries. For
example, in the previous process model, you cannot directly specify that Task A1 depends on Task
1 because that relationship would enter into Subprocess A, crossing the subprocess boundary.

 Group Tasks with Subprocesses

2-47

In this case, you need to create a relationship between the Task 1 and Subprocess A instead.

Example Process Model with Subprocesses
To access an example process model that groups tasks into subprocesses for Model Verification and
Code Verification, enter processAdvisorExampleStart(Subprocess = true) at the command
line.

See Also
padv.Subprocess

Related Examples
• “Overview of Process Model” on page 2-9
• “Manage Multiple Build and Verification Workflows Using Processes” on page 2-49

2 Customize Your Process Model

2-48

Manage Multiple Build and Verification Workflows Using
Processes

With the CI/CD Automation for Simulink Check support package, you can define a development and
verification process for your team by using a process model. Inside your process model, you can
define multiple processes for the different build and verification workflows, environments, and other
situations that your team needs a defined process for. A process is a group of tasks or subprocesses
inside your process model. For example, you can create separate processes for:

• Smoke testing with fail-fast tasks
• Local prequalification
• CI builds
• Different stages of the development process
• Different product readiness levels

Processes allow you to have multiple build and verification processes standardized and available to
your team, with the tasks configured appropriately for that specific workflow. In Process Advisor, you
can select which process you want to use from the Processes gallery in the toolstrip. APIs like the
runprocess function also allow you to specify which Process to run.

Open Process Model
You can create multiple processes by editing the process model file for your project. If you do not
have a project or process model, see “Automate and Run Tasks with Process Advisor” on page 1-2 to
get started.

1 Open the project that contains your files.
2 Open Process Advisor. On the Project tab, in the Tools section, click Process Advisor.
3 Edit the process model by clicking the Edit button in the toolstrip.

Overview of Processes
Your process model can contain multiple processes and each process can contain tasks and
subprocesses. For example, you can have one process for your full qualification process and another
process for fail-fast, local prequalification. Each of those processes can contain tasks and or
subprocesses of tasks. Additionally, you can share tasks and subprocesses across multiple processes.

 Manage Multiple Build and Verification Workflows Using Processes

2-49

https://www.mathworks.com/matlabcentral/fileexchange/115220-ci-cd-automation-for-simulink-check

You can use the padv.Process methods like addTask, addSubprocess,
addDependsOnRelationship, and addRunsAfterRelationship inside the process model to
define the tasks, subprocesses, and relationships for your process.

Define New Processes
Add Processes

To add a new process inside your process model, use the method addProcess.

function processmodel(pm)
 arguments
 pm padv.ProcessModel
 end

 % Add processes
 processA = pm.addProcess("A");
 processB = pm.addProcess("B");

end

2 Customize Your Process Model

2-50

Define Processes Using Process-Specific Methods

When you define multiple processes inside your process model, use the padv.Process methods to
add tasks, subprocesses, and relationships directly to your process. Unlike the methods for
padv.ProcessModel, which add tasks and subprocesses to the default process inside your process
model, the padv.Process methods allow you to specify which specific process you want to add a
task, subprocess, or relationship to. For example, if you have multiple processes and want to specify a
dependency between two tasks inside a process, use the padv.Process method
addDependsOnRelationship to specify that dependency. The method
addDependsOnRelationship accepts the process name as an input argument. Using process-
specific methods is especially important if you share tasks across multiple processes and need to
define different relationships to that task within each process.

The class padv.Process has several methods that you can use to customize the process. For more
information, see padv.Process.

addTask Add task to process

myProcess.addTask("myTask");

addSubprocess Add subprocess to process

myProcess.addSubprocess("mySubprocess");

addDependsOnRelationship Create dependency between two tasks

myProcess.addDependsOnRelationship(...
 Source=taskB,...
 Dependency=taskA);

The build system always runs the Dependency
task before the Source task.

addRunsAfterRelationship Specify predecessor for task

myProcess.addRunsAfterRelationship(...
 Source=taskB,...
 Predecessor=taskA);

When you run your process, the build system
runs the Predecessor task before the Source
task when possible.

Add Tasks and Organize Tasks Within Process

You can add tasks directly to a specific process by using the addTask method for padv.Process.
You can also use subprocesses to organize tasks within your process. For example, this process model
uses the padv.Process methods to add example tasks and subprocesses to specific processes in the
process model.

function processmodel(pm)
 % This function defines a process model for a project by setting up processes,
 % subprocesses, and tasks within those processes.

 arguments
 pm padv.ProcessModel
 end

 Manage Multiple Build and Verification Workflows Using Processes

2-51

 % --- Processes ---
 % Add processes
 processA = pm.addProcess("A");
 processB = pm.addProcess("B");

 % --- Tasks ---
 % Create example tasks
 task1 = padv.Task("task1");
 task2 = padv.Task("task2");
 task3 = padv.Task("task3");
 taskA1 = padv.Task("taskA1");
 taskA2 = padv.Task("taskA2");
 taskB1 = padv.Task("taskB1");
 taskB2 = padv.Task("taskB2");

 % --- Subprocesses ---
 % Add subprocesses to parent process
 subprocessA = processA.addSubprocess("subprocessA"); % Add to process A
 subprocessB = processB.addSubprocess("subprocessB"); % Add to process B

 % --- Add Tasks to Processes ---
 processA.addTask(task1); % Add task1 to process A
 processA.addTask(task2); % Add task2 to process A
 processB.addTask(task1); % Reuse task1 in process B
 processB.addTask(task3); % Add task3 to process B

 % --- Add Tasks to Subprocesses ---
 subprocessA.addTask(taskA1); % Add taskA1 to subprocessA under process A
 subprocessA.addTask(taskA2); % Add taskA2 to subprocessA under process A
 subprocessB.addTask(taskB1); % Add taskB1 to subprocessB under process B
 subprocessB.addTask(taskB2); % Add taskB2 to subprocessB under process B

end

Note By default, if you do not add processes to a process model, the process model automatically
creates a default process, "CIPipeline", for you. If you add tasks and subprocesses directly to the
padv.ProcessModel object, you are actually adding those tasks and subprocesses to an
intermediate, default process. By default, the default process is "CIPipeline".

You can access the padv.Process object that represents the default process by using the method
findProcess inside the process model.

function processmodel(pm)
 % Defines the project's processmodel

 arguments
 pm padv.ProcessModel
 end

 pm.addTask("MyCustomTask");
 processCI = pm.findProcess("CIPipeline");

end

2 Customize Your Process Model

2-52

Add Task Relationships to Process

To specify a preferred task execution order inside a specific process, use the padv.Process method
addRunsAfterRelationship. For example, for each process, you can specify that a shared task,
task1, should run after a specific task in that process.

 % Create Dependencies Within Specific Process
 processA.addRunsAfterRelationship(Source = task2,...
 Predecessor = task1);
 processB.addRunsAfterRelationship(Source = task3,...
 Predecessor = task1);

You can add a dependency between tasks inside a specific process by using the padv.Process
method addDependsOnRelationship. For example, you can specify that for processA, task2
depends on task1 and cannot run without task1 running first.

 % Add dependency between tasks inside Process A
 processA.addDependsOnRelationship(...
 Source = task2,...
 Dependency = task1);

Example Process Model with Multiple Processes

Suppose that you have two Model Advisor configuration files:

• allChecks.json — Contains all of the Model Advisor checks that you want to run
• quickChecks.json — Contains a subset of your Model Advisor checks for fast-fail checking

For your full process, you can add an instance of the RunModelStandards task that runs using
allChecks.json. For your "fail-fast" process, you can add an instance of the RunModelStandards
task that runs using quickChecks.json. Note that this code shares the query object, findModels,
across the tasks to improve performance. By sharing the query object, the build system can avoid re-
running the padv.builtin.query.FindModels query. For more information, see “Best Practices
for Process Model Authoring” on page 2-56.

function processmodel(pm)
 % Defines the project's processmodel

 arguments
 pm padv.ProcessModel
 end

 fullProcess = pm.addProcess("Full");
 failfastProcess = pm.addProcess("Fail-Fast");

 % Define Shared Query and Add Shared Query to Process Model
 findModels = padv.builtin.query.FindModels(Name="ModelsQuery");
 pm.addQuery(findModels);

 % Add Full Model Advisor Checks Task to CI Process
 % (uses allChecks.json MA config file)
 taskFullMA = fullProcess.addTask(...
 padv.builtin.task.RunModelStandards(...
 Name = "fullMATask",...
 IterationQuery=findModels));
 taskFullMA.addInputQueries(...
 padv.builtin.query.FindFileWithAddress(...

 Manage Multiple Build and Verification Workflows Using Processes

2-53

 Type='ma_config_file', Path=fullfile('tools','allChecks.json')));

 % Add Quick Checks Task to Fail-Fast Processs
 % (uses quickChecks.json MA config file)
 taskFailFastMA = failfastProcess.addTask(...
 padv.builtin.task.RunModelStandards(...
 Name = "quickChecksTask",...
 IterationQuery=findModels));
 taskFailFastMA.Title = "Check Modeling Standards (subset)";
 taskFailFastMA.addInputQueries(...
 padv.builtin.query.FindFileWithAddress(...
 Type='ma_config_file', Path=fullfile('tools','quickChecks.json')));

end

Use Specific Process
In Process Advisor, you can select which process you want to use from the Processes gallery in the
toolstrip. By default, processes appear in the order that you define them in the process model.

APIs like the runprocess function and processadvisor function also allow you to specify which
process to use.

runprocess(Process = "Fail-Fast")
processadvisor("AHRS_Voter","Fail-Fast")

Default Process Behavior

By default, the default process is the first process that you add to your process model. When you open
Process Advisor for the first time, the Tasks column shows the tasks in your default process. APIs like
the runprocess function use the default process unless you specify which process to use. You can
specify a different default process by overriding the DefaultProcessId property of the
padv.ProcessModel object inside your process model.

pm.DefaultProcessId = "Fail-Fast";

To identify which process is the default process for the process model, you can use the getprocess
function in the MATLAB Command Window.

getprocess().DefaultProcessId

The first time that you open Process Advisor, the app opens to the default process. Otherwise, Process
Advisor re-opens your last opened process. To force the next Process Advisor session to open the

2 Customize Your Process Model

2-54

default process instead of the last opened process, you can reset your user settings from the MATLAB
Command Window.

us = padv.UserSettings.get();
us.resetToDefaultValues();

See Also
padv.Process | padv.Subprocess

Related Examples
• “Group Tasks with Subprocesses” on page 2-46
• “Overview of Process Model” on page 2-9

 Manage Multiple Build and Verification Workflows Using Processes

2-55

Best Practices for Process Model Authoring
With the CI/CD Automation for Simulink Check support package, you can define a development and
verification process for your team by using a process model. When you define your process model,
consider the following process modeling best practices that you can use to maintain your process
model, handle dependencies, and improve process model loading times.

Keep Process Model File in Project Root
By default, the build system automatically creates a process model file in the root folder of the
project. If possible, keep your process model file the in root folder of the project so that the build
system can detect changes to the file and mark tasks as outdated.

Make Sure Only One Process Model File on Path
To avoid unexpected behavior, make sure only one processmodel file is on the path. You can instruct
the build system to detect when there are multiple process model files on the path. For more
information, see the property DetectMultipleProcessModels for padv.ProjectSettings.

Review Untracked Dependencies
If you make a change to an untracked input or output file, Process Advisor does not mark the task as
outdated. Make sure that task inputs or outputs that appear as Untracked do not need to be
tracked to maintain the task status and result information that you need for your project.

By default, the build system generates a warning for untracked I/O files. To change build system
behavior when there are untracked I/O files, you can specify the project setting Untracked
dependency behavior as either:

• "Allow" — Do not generate warnings or errors for untracked I/O files.
• "Warn" — Generate a warning if a task has untracked I/O files. In Process Advisor, the I/O column

shows a warning icon .
• "Error" — Generate an error if a task has untracked I/O files.

For more information, see “Specify Settings for Process Advisor and Build System” on page 1-16. For
more information on untracked files and change tracking, see “Exclude Files from Change Tracking
in Process Advisor” on page 2-59.

Share Queries Across Tasks
You can improve Process Advisor load times by sharing query instances across your process model. If
multiple tasks in the process model use the same iteration query, you can update your code to share a
single query object instance across these tasks. For example, if multiple tasks use FindModels as an
iteration query, you can create a FindModels object and use that object as the iteration query for
those tasks:

2 Customize Your Process Model

2-56

https://www.mathworks.com/matlabcentral/fileexchange/115220-ci-cd-automation-for-simulink-check

Functionality

taskA = pm.addTask("taskA",...
 IterationQuery = padv.builtin.query.FindModels);
taskB = pm.addTask("taskB",...
 IterationQuery = padv.builtin.query.FindModels);

Use This Instead
sharedModelsQuery = padv.builtin.query.FindModels(...
 Name="SharedModelsQuery");
taskA = pm.addTask("taskA",...
 IterationQuery = sharedModelsQuery);
taskB = pm.addTask("taskB",...
 IterationQuery = sharedModelsQuery);

Parent Queries

A query can use the results of another query by specifying that query as a parent. For example, the
built-in query padv.builtin.query.FindModelsWithTestCases uses the built-in query
padv.builtin.query.FindModels as a parent query to initially find the models in the project and
then the built-in query padv.builtin.query.FindModelsWithTestCases itself finds the test
cases associated with those models.

You can specify a parent query for the following built-in queries by using the Parent name-value
argument:

• padv.builtin.query.FindCodeForModel
• padv.builtin.query.FindMAJustificationFileForModel
• padv.builtin.query.FindModelsWithTestCases
• padv.builtin.query.FindRequirementsForModel
• padv.builtin.query.FindTestCasesForModel

For example, multiple built-in queries use the built-in query padv.builtin.query.FindModels as
a parent query. For iteration queries, the build system runs the parent query first to find the initial set
of artifacts that the child query can run on. You can use the Query argument to specify a shared
parent query.

 findModels = padv.builtin.query.FindModels(Name="ModelsQuery");
 findModelsWithTests = padv.builtin.query.FindModelsWithTestCases(...
 Name = "ModelsWithTests",...
 Parent = findModels);
 findTestsForModel = padv.builtin.query.FindTestCasesForModel(...
 Name = "TestsForModel",...
 Parent = findModels);
 pm.addQuery(findModels);
 pm.addQuery(findModelsWithTests);
 pm.addQuery(findTestsForModel);

 Best Practices for Process Model Authoring

2-57

See Also

Related Examples
• “Best Practices for Effective Builds” on page 3-32
• “Overview of Process Model” on page 2-9
• “Specify Settings for Process Advisor and Build System” on page 1-16

2 Customize Your Process Model

2-58

Exclude Files from Change Tracking in Process Advisor
When you use CI/CD Automation for Simulink Check, the support package creates a digital thread for
your project to capture and analyze certain project artifacts and their relationships. Process Advisor
and its build system monitor the digital thread to detect changes and identify outdated task results.
By default, any change to an artifact or its dependencies makes related task results outdated.

However, you can exclude specific artifacts from change tracking if you know that certain artifacts
change regularly and do not impact task validity. This can help you reduce unnecessary task re-runs
while maintaining the task status and result information that you need for your project. You can
modify the change tracking behavior for the:

• “Process Model” on page 2-59
• “Task Inputs” on page 2-60
• “Task Outputs” on page 2-60

Make sure to review the files that you exclude from change tracking. For more information, see
“Handling Untracked Dependencies” on page 2-62.

Process Model
If you do not want changes to the process model to make task results outdated, you can open the
Settings in Process Advisor and clear Add process model as dependency in the user settings. For
more information, see “Specify Settings for Process Advisor and Build System” on page 1-16 and
padv.UserSettings.

By default, if you make a change to the process model file, Process Advisor marks task results as
outdated because the tasks in the updated process model might not match the tasks that generated
the task results from the previous version of the process model. This behavior occurs because Process
Advisor automatically adds the process model as a dependency for each task to help make sure that
tasks in the updated process model match the tasks that generated the previous task results.

 Exclude Files from Change Tracking in Process Advisor

2-59

https://www.mathworks.com/matlabcentral/fileexchange/115220-ci-cd-automation-for-simulink-check

Task Inputs
Turn Tracking Off for Query Artifacts

If you find your task inputs by using the built-in query
padv.builtin.query.FindFileWithAddress, you can turn off change tracking for the artifacts
that the query returns by specifying the query property TrackArtifacts as false. The file that the
query returns is untracked and if you make a change to the file, Process Advisor does not mark the
task as outdated.

padv.builtin.query.FindFileWithAddress(...
Type='ma_config_file', Path=which('sampleChecks.json'),...
TrackArtifacts = false)

Tracking Behavior for Artifacts Outside Project

You can use artifacts outside your project as inputs to your tasks, but changes to those files are
untracked by default. For example, if you have a shared Model Advisor configuration file,
SHARED_MA_CONFIG.json, that is outside your project, you can add the file as an input to the
Check Modeling Standards task.

maTask = pm.addTask(padv.builtin.task.RunModelStandards());
maTask.addInputQueries(padv.builtin.query.FindFileWithAddress(...
 Type='ma_config_file', Path=which('SHARED_MA_CONFIG.json')));

In the Process Advisor I/O column, the file appears as Untracked because you cannot track changes
to files outside the project. If you make a change to an untracked file, Process Advisor does not mark
the task as outdated.

Task Outputs
Turn Tracking Off for All Task Outputs

If you do not want Process Advisor to mark a task as outdated when you make changes to task
outputs, you can turn off change tracking for those task outputs. In your process model, specify the
task property TrackOutputs as false.

maTask = pm.addTask(padv.builtin.task.RunModelStandards());
maTask.TrackOutputs = false;

2 Customize Your Process Model

2-60

In the Process Advisor I/O column, the outputs appear as Untracked. If you make a change to an
untracked file, the Process Advisor does not mark the task as outdated.

Turn Tracking Off for Specific Task Outputs

You can turn off change tracking for a specific artifact by specifying the Track property of the
artifact address as false. The artifact address is stored in the ArtifactAddress property of a
padv.Artifact object. The built-in queries typically return artifacts as padv.Artifact objects,
but you can also manually define an artifact address for an artifact by using the utility function
padv.util.ArtifactAddress.

You can ignore changes to specific task outputs by specifying the Track property inside a custom
task. For example, the following custom task inherits from the built-in task DetectDesignErrors,
but overrides the run method to turn off change tracking for the output report. The custom task
identifies the report by iterating over each task output, checking if the artifact has the same report
format as the task, and then specifying the Track property for the artifact address.

classdef MyDetectDesignErrors < padv.builtin.task.DetectDesignErrors
 % Detect design errors, but ignore changes to generated report files
 methods

 function obj = MyDetectDesignErrors(options)
 arguments
 options.Name = "MyDetectDesignErrors";
 options.Title = "My Detect Design Errors";
 end
 obj@padv.builtin.task.DetectDesignErrors(Name = options.Name);
 obj.Title = options.Title;
 end

 function taskResult = run(obj,input)

 % use DetectDesignErrors to run Design Verifier
 taskResult = run@padv.builtin.task.DetectDesignErrors(obj,input);

 Exclude Files from Change Tracking in Process Advisor

2-61

 % for each task output, check if it's a report
 for i = 1:length(taskResult.OutputArtifacts)
 artifact = taskResult.OutputArtifacts(i);
 artifactAddress = artifact.ArtifactAddress;
 fileAddress = artifactAddress.getFileAddress;
 if contains(fileAddress, obj.ReportFormat, IgnoreCase=true)
 % if the task output is a report, turn off change tracking for the report
 artifactAddress.Track = false;
 end
 end

 end
 end
end

Handling Untracked Dependencies
By default, the Process Advisor generates a warning when you have untracked I/O files that impact

your tasks. In the I/O column, Process Advisor shows a warning icon for tasks that have
untracked inputs or outputs. You can change this behavior by opening the Settings in Process
Advisor and specifying the project setting Untracked dependency behavior to either allow,
generate a warning, or generate an error if a task has untracked I/O files. For more information, see
“Specify Settings for Process Advisor and Build System” on page 1-16 and padv.ProjectSettings.

If you make a change to an untracked input or output file, Process Advisor does not mark the task as
outdated. Make sure that task inputs or outputs that appear as Untracked do not need to be
tracked to maintain the task status and result information that you need for your project.

See Also
padv.Artifact | padv.builtin.query.FindFileWithAddress | padv.Task |
padv.ProjectSettings | padv.UserSettings | padv.util.ArtifactAddress

Related Examples
• “Best Practices for Process Model Authoring” on page 2-56
• “Create Custom Tasks” on page 2-28
• “Specify Settings for Process Advisor and Build System” on page 1-16

2 Customize Your Process Model

2-62

Test Tasks and Queries
With the CI/CD Automation for Simulink Check support package, you can define a development and
verification process by adding tasks to a process model and using queries to find relevant artifacts
like models, requirements, and test cases. If you are trying to debug or test a task or query, it can be
helpful to run the task or query directly from the MATLAB Command Window. To test a task, you can
find the ID for a specific task iteration and use the runprocess function to run that task iteration. To
test a query, you can create an instance of the query and use the run method to get the artifacts that
the query returned.

This example shows how to test a built-in query and then use the artifacts that the query returns to
test a built-in task. For more information on built-in tasks and queries, see the “Built-In Tasks” on
page 2-14 and “Built-In Queries” on page 2-23. To evaluate the task inputs and outputs defined by
your process model, you can dry run tasks as shown in “Dry Run Tasks to Test Process Model” on
page 2-66.

Open Project
Open a project. For this example, you can open the Process Advisor example project.

processAdvisorExampleStart

Find Artifacts Using Query
Suppose that you want to test the built-in query padv.builtin.query.FindModels.

1 In the MATLAB Command Window, create an instance of the query.

q = padv.builtin.query.FindModels;
2 To see which artifacts the query returns, run the query by using the run method.

artifacts = run(q)

artifacts =

 1×5 Artifact array with properties:

 Type
 Parent
 ArtifactAddress
 Alias

In this example, the query returns the five models in the example project. If you open the Alias
property, you can see the names of each of the models returned by the
padv.builtin.query.FindModels query.

artifacts.Alias
3 To filter the artifacts returned by the query, you can modify the behavior of the query using the

name-value arguments. For example, to exclude artifacts that contain Control in the file path,
you would specify:

q = padv.builtin.query.FindModels(ExcludePath = "Control");
4 Re-run the query to see the updated query results.

artifacts = run(q)

 Test Tasks and Queries

2-63

https://www.mathworks.com/matlabcentral/fileexchange/115220-ci-cd-automation-for-simulink-check

artifacts =

 Artifact with properties:

 Type: "sl_model_file"
 Parent: [0×0 padv.Artifact]
 ArtifactAddress: [1×1 padv.util.ArtifactAddress]
 Alias: "AHRS_Voter.slx"

For this example, the query returns a single Simulink model, AHRS_Voter.slx, since
AHRS_Voter.slx is the only model that does not contain Control in its file path.

artifacts.ArtifactAddress

ans =

ArtifactAddress

 FileAddress: "02_Models/AHRS_Voter/specification/AHRS_Voter.slx"
 OwningProject: "ProcessAdvisorExample"
IsSubFileArtifact: 0

If the artifact is in a referenced project, the OwningProject returns the name of the referenced
project. If you need to know which project contains an artifact, you can use the
getOwningProject function on the artifact address object. For more information, see
padv.util.ArtifactAddress.

Run Task for Specific Artifacts
Suppose that you want to run the task padv.builtin.task.GenerateSimulinkWebView on the
AHRS_Voter model returned by a query.

You can run a specific task iteration by specifying the Tasks and FilterArtifact name-value
arguments for the runprocess function.

runprocess(...
Tasks = "padv.builtin.task.GenerateSimulinkWebView",...
FilterArtifact = artifacts(1))

You can use the other name-value arguments of runprocess to specify how the task iteration runs.
For example, Force = true forces the task iteration to run, even if the results are already up-to-
date and Isolation = true has the task iteration run without running any of its dependencies.

runprocess(...
Tasks = "padv.builtin.task.GenerateSimulinkWebView",...
FilterArtifact = artifacts(1),...
Force = true,...
Isolation = true)

For more information, see runprocess.

See Also
padv.Task | padv.Query | runprocess

2 Customize Your Process Model

2-64

Related Examples
• “Overview of Process Model” on page 2-9
• “Add Tasks to Process” on page 2-13
• “Find Artifacts with Queries” on page 2-23
• “Dry Run Tasks to Test Process Model” on page 2-66

 Test Tasks and Queries

2-65

Dry Run Tasks to Test Process Model
With the CI/CD Automation for Simulink Check support package, you can define a development and
verification process by adding tasks to a process model and using queries to find relevant artifacts
like models, requirements, and test cases. As you set up your process model, you can quickly test
your process model by performing dry runs. A dry run can help you test your process model by
validating task inputs and generating representative task outputs without actually running the tasks.
Dry runs can be helpful for quickly testing your process model and CI pipelines to help make sure
they are set up as expected.

Dry Run Tasks
In the Process Advisor app, you can:

• Dry run a specific task by pointing to the task, opening the options menu (...), and then clicking
Dry Run Task.

• Dry run each task in the process by clicking Run All > Dry Run All in the toolstrip.

By default, these dry run buttons appear in the options menu and toolstrip. But if you frequently use
dry runs, you can set dry runs as the default task execution mode by clicking Run All > Set Dry Run
as Default. This allows you to:

• Dry run a specific task by pointing to the task and clicking the dry run button .
• Dry run each task in the process by clicking Dry Run All directly in the Process Advisor toolstrip.

The Set Dry Run as Default option is stored in the DryRunDefaultMode property in the user
settings and only applies to the current MATLAB session. For more information, see
padv.UserSettings.

Alternatively, you can dry run tasks programmatically by using the runprocess function. Use the
DryRun argument to perform a dry run. When you programmatically perform a dry run, you can also
specify whether the dry run automatically checks out the licenses associated with the tasks, you can
specify the DryRunLicenseCheckout. For CI systems, dry runs can help you make sure that you
have the correct setup and required licenses available on your CI agent and that your pipeline
appears as expected. For more information, see runprocess and “Tips for Setting Up CI Agents” on
page 3-28.

Dry Run Results
When you dry run a task, the task can validate task inputs and generate representative task outputs.
In the Process Advisor app, the dry run results have a beaker icon next to the task status. For

2 Customize Your Process Model

2-66

https://www.mathworks.com/matlabcentral/fileexchange/115220-ci-cd-automation-for-simulink-check

example, a passing dry run result shows the passing icon with the beaker icon . If you point to the
task results in the I/O column, you can see the inputs, placeholder outputs, and dependencies for the
task. The results from the dry run are placeholders and are not valid results. Do not use dry run
results for anything other than testing your process model and its file management.

When you point to the status icon next to a task, a pop-up shows details like the task name, status,
and duration. If the task was a dry run, the status includes (Dry Run).

Note that Process Advisor and the build system treat the dry run results as normal task run results. If
a task has up-to-date dry run results and you re-run the task, the build system automatically skips re-
running the task because the dry run results are already up-to-date. If you dry run a task and then
want to perform a normal run of the task, you need to clean the task results before trying to re-run
the task. To clean the results for a specific task, you can point to that task, open the options menu
(...), and click Clear results and delete outputs.

Specify Dry Run Functionality for Tasks
Each built-in task has a specialized dryRun method to help you evaluate the setup of task inputs and
outputs for that task in the process model. For custom tasks, you can either inherit the default dry
run behavior or create specialized dry run functionality for your task. Optionally, you can change how
your tasks perform dry runs by:

• Overriding the dryRun method for class-based tasks
• Specifying the task property DryRunAction for function-based tasks
• Changing the default dry run results for tasks in your process model by modifying the

DefaultDryRunResults property for padv.ProcessModel. If a task does not have a dry run
functionality defined, the task returns these default dry run results.

 Dry Run Tasks to Test Process Model

2-67

Override dryRun Method

To override the dry-run functionality for a class-based custom task, you can override the dryRun
method. You can use the dryRun method to define validation criteria for your task iterations, inputs,
and outputs. Inside the classdef, in the methods, you can add a dryRun function that can perform
your custom dry run functionality. In general, the dryRun method should use the following method
signature:

function taskResult = dryRun(obj, input)
 ...
end

For example, the following code defines a dry run method that takes the current iteration artifact and
checks if the artifact is a model (sl_model_file). If the artifact is a model, then the dry run
generates placeholder output text files for the task. Otherwise, the task returns a failing task status.

function taskResult = dryRun(obj, input)
 taskResult = padv.TaskResult;
 iterationArtifact = input{1};

 if ismember('sl_model_file',iterationArtifact.Type)
 % If input is model, output text file with same name as model
 modelName = iterationArtifact.Alias;
 taskResult.OutputPaths = fullfile(obj.resolvePath(obj.OutputDirectory),...
 modelName+".txt");
 else
 taskResult.Status = padv.TaskStatus.Fail;
 disp('Invalid input. Expected SLX model file.')
 end

end

Change Default Dry Run Results

By default, if a task does not have a dry run functionality defined, the task returns the default dry run
results specified by the padv.ProcessModel property DefaultDryRunResults. You can create a
different set of default dry run results by creating and using a padv.TaskResult object with
different property values. For example, to have the default dry run results be failing task results with
specific result values in the Details column, in your process model you can create a
padv.TaskResult object and update the value of the DefaultDryRunResults property.

res = padv.TaskResult;
res.Status = padv.TaskStatus.Fail;
res.ResultValues = struct(...
 "Pass",1,...
 "Warn",2,...
 "Fail",3);
pm.DefaultDryRunResults = res;

When you dry run a task that does not already have a defined dry run behavior, the task uses the
specified default dry run results.

2 Customize Your Process Model

2-68

See Also
padv.ProcessModel | padv.Task | padv.TaskResult

Related Examples
• “Overview of Process Model” on page 2-9
• “Add Tasks to Process” on page 2-13
• “Create Custom Tasks” on page 2-28
• “Test Tasks and Queries” on page 2-63

 Dry Run Tasks to Test Process Model

2-69

Troubleshoot Missing Tasks, Artifacts, and Dependencies
When you use CI/CD Automation for Simulink Check, the support package creates a digital thread to
capture the attributes and unique identifiers of certain artifacts in your project. The digital thread is a
set of metadata information about artifacts in a project, artifact structures, and the traceability
relationships between artifacts. The Process Advisor app and build system monitor and analyze the
digital thread to identify artifacts, detect changes to project files, generate task iterations, and
identify outdated task results. The digital thread is cached in a database stored in derived >
artifacts.dmr in the project. The digital thread only tracks changes to specific types of artifacts.
For information on supported artifact types, see “Valid Artifact Types” on page 2-25.

Artifact Issues
Before you begin troubleshooting Process Advisor or the build system:

• Check if your artifacts are saved in the project. Project references are supported starting in
R2023a. You can use files outside your project as inputs to tasks, but the files appear as
Untracked because you cannot track changes to files outside the project. If you make a change to
an untracked file, the build system does not mark the task as outdated.

• Artifacts are on the MATLAB search path before you open the Process Advisor app.
• You used the Process Advisor app or build system to run your tasks and to collect task results.
• Artifacts are not saved to a prohibited output folder. Prohibited output folders include the

simulation cache, project resources folder, and .SimulinkProject.
• You have a compiler configured. You should use the same compiler that you use in the target

development environment. If you only have the MinGW® compiler installed on your system, the
mex command automatically chooses MinGW.

• Make sure your tests are testing a model or an atomic subsystem, Stateflow chart, MATLAB
function, or subsystem reference.

Project Analysis Issues
At the bottom of the Process Advisor app is a Project Analysis Issues pane. After Process Advisor
analyzes the project, the Project Analysis Issues shows errors or warnings that the artifact analysis
generated.

2 Customize Your Process Model

2-70

https://www.mathworks.com/matlabcentral/fileexchange/115220-ci-cd-automation-for-simulink-check

1 Investigate project analysis issues in the project by clicking on Project Analysis Issues.

• An error indicates that Process Advisor might not have been able to properly analyze
artifacts, trace artifacts, or identify outdated results, so the information shown by Process
Advisor might be incomplete.

• A warning indicates that Process Advisor does not support that specific artifact, modeling
construct, or relationship.

2 Fix the issues listed in the Project Analysis Issues pane to make sure the app can fully analyze
the project, generate the expected task iterations, and detect outdated results.

When there are issues with an artifact, check that the artifact does not use the following
unsupported modeling constructs. The digital thread does a static analysis of your project.
Certain modeling constructs dynamically add unsaved information or ambiguous relationships.
The digital thread does not detect these changes in the project and the changes do not cause
related task results to become outdated.

Affected Artifact Unsupported Construct
Library Library forwarding table

Self-modifiable masks
Model Saved in release R2012a or earlier

Model loading callbacks
Model shadowing

Test case MATLAB-based Simulink test
Test file Test-file level callbacks

 Troubleshoot Missing Tasks, Artifacts, and Dependencies

2-71

Affected Artifact Unsupported Construct
Test suite Test-suite level callbacks

Note To test libraries with Process Advisor, specify function interfaces for each of your library
blocks and use the library-based code generation workflow. For more information, see “Library-
Based Code Generation for Reusable Library Subsystems” (Embedded Coder).

Make sure you only use the library blocks in the model context that you verified. When you test
the model, you can use coverage filters to exclude the library blocks that you already tested.

3 Click the refresh button in the pane to refresh the list of project analysis issues.

4 If you want to filter out certain types of issues, you can get the project settings,
padv.ProjectSettings.get(), and add issue IDs to the
FilteredDigitalThreadMessages property value.

To get a list of the issue messages and issue IDs, use the function getArtifactIssues.

metric_engine = metric.Engine();
issues = getArtifactIssues(metric_engine)
issuesMessages = issues.IssueMessage
issueIDs = issues.IssueId

Suppose that you want to filter out the issue message associated with the issue ID
"alm:artifact_service:CannotResolveElement". You can use the method
addFilteredDigitalThreadMessages to add the issue message to the list of filtered
messages:

ps = padv.ProjectSettings.get();
ps.addFilteredDigitalThreadMessages(...
"alm:artifact_service:CannotResolveElement");

For more information, see padv.ProjectSettings.

Limitations on Incremental Build
There are changes that incremental build does not detect. Tasks depending on those changes will
remain up-to-date and will not execute with Run All. If incremental build does not detect changes to
a file that a task depends on, the file is an undetected dependency. For example, if you have a model
that uses a referenced global workspace variable and you make a change to the variable, the task
results associated with the model will not become outdated.

The table in this section lists the known untracked dependencies.

• The Artifact column lists the artifacts with known untracked dependencies.
• The Undetected Dependency column lists the files that incremental build does not detect

changes to. Changes to these files do not cause tasks associated with the artifact to become
outdated.

2 Customize Your Process Model

2-72

Artifact Undetected Dependency
Model Model callbacks

Referenced global workspace variables
Global enumeration definitions
Externally-saved model workspace variables (if auto-initialized)
Data or functions referenced in masks or callbacks inside the model
Known dependencies specified in the model reference rebuild options of a
configuration set
Simulation inputs and simulation outputs specified in model configuration
sets
Signal Editor scenarios
C code referenced in C Caller blocks
Code inside SIL (software-in-the-loop) blocks
Files associated with S-Functions
Code replacement libraries
Custom code
System Composer profiles or stereotypes

Test case MATLAB code in:

• Pre-load, post-load, clean-up, and assessment callbacks
• Custom criteria
External configurations
MATLAB test files

If possible, use a Simulink Data Dictionary file instead of referenced global workspace variables or
global enumeration definitions. The digital thread tracks changes to data dictionaries.

If you do not want the build system or the Process Advisor app to run incremental builds, you can
disable incremental builds for a project. For more information, see “Specify Settings for Process
Advisor and Build System” on page 1-16. You can also force up-to-date tasks to execute by using one
of these approaches:

• In the Process Advisor app, either point to a task and click the run button or click Run All >
Force Run All.

• For the runprocess function, specify Force as true.

Other Limitations
There are known limitations in the Process Advisor app and build system:

• Process Advisor only shows results for tasks that you ran using Process Advisor and the build
system.

• If a top model and at least one referenced model have unsaved changes, the Process Advisor is
unable to save the top model and generates the error: The following files were not able
to be saved: <Path to top model>

 Troubleshoot Missing Tasks, Artifacts, and Dependencies

2-73

• For the Check Coding Standards task, if you specify PsAccessEnable as true, make sure you
also specify values for the other Polyspace Access™ Configuration Options. For information, see
“Upload Results to Polyspace Access”.

If you do not specify the other required configuration options, the task returns an error: Task
'padv.builtin.task.AnalyzeModelCode' threw unhandled exception 'Invalid
argument at position 2. Value must not be empty.

• Before you use the pipeline generator, make sure that all of the products used by your pipeline are
licensed and installed. If a product is not licensed or installed, the pipeline generator returns an
error message: Error using + Not enough input arguments. Error in
padv.pipeline.internal.gitlab.PipelineGenerator/createGitlabYMLContent
(line 166) gitlabPipelineFullPath = obj.GitlabOptions.PipelineDirRelPath +
'###' + gitlabPipeline.Name;.

• Your task results can unexpectedly become outdated if you use one of the following queries as an
input query and specify non-empty values for IncludeLabel, ExcludeLabel, IncludePath, or
ExcludePath:

• padv.builtin.query.FindCodeForModel
• padv.builtin.query.FindDesignModels
• padv.builtin.query.FindRequirementsForModel
• padv.builtin.query.FindTestCasesForModel
• padv.builtin.query.FindTopModels
• padv.builtin.query.FindUnits

If you see this behavior, consider using a different query, like
padv.builtin.query.FindArtifacts, instead.

Resolve Path Issues

If an artifact is not on the MATLAB search path, add the artifact to your project, then close and re-
open the project. When you re-open the project, the MATLAB search path reflects the updated search
path.

Handling Invalid Dependencies
Suppose you have one subprocess that contains your code generation tasks and another subprocess
that contains your code analysis tasks.

spCodeGen = pm.addSubprocess("Code Generation Tasks");
spCodeAnalysis = pm.addSubprocess("Code Analysis Tasks");

Your code analysis tasks need access to the generated code, but the tasks themselves cannot directly
depend on the code generation task because that relationship would cross the subprocess boundary.

2 Customize Your Process Model

2-74

If you try to have a code analysis task in one subprocess depend on a code generation task in another
subprocess, Process Advisor generates an error like: Invalid dependency between Task
'padv.builtin.task.RunCodeInspection' and 'padv.builtin.task.GenerateCode'.
Make sure 'padv.builtin.task.GenerateCode' exists in the current process and
that the dependency does not cross any subprocess boundaries.

To pass the generated code from your code generation subprocess to your code analysis subprocess,
you can:

• Update code analysis tasks, like RunCodeInspection, to find and use the generated model code
as an input to the task using the built-in query padv.builtin.query.FindCodeForModel

• Specify that the code analysis subprocess depends on the code generation subprocess

% Update code analysis tasks to find
% and use model code as an input to the task
slciTask = spCodeAnalysis.addTask(...
 padv.builtin.task.RunCodeInspection(...
 InputQueries=padv.builtin.query.FindCodeForModel));

% Code Analysis Subprocess depends on Code Generation Subprocess
spCodeAnalysis.dependsOn(spCodeGen);

 Troubleshoot Missing Tasks, Artifacts, and Dependencies

2-75

Analyze Project From Scratch
If you experience unexpected project analysis issues, you can clear the current project analysis and
analyze your project from scratch by calling the function padv.util.forceReanalyzeProject:

padv.util.forceReanalyzeProject()

The function forces a reanalysis of the current project by creating backups of the existing artifact
database (artifacts.dmr), clearing the existing project analysis, and reanalyzing the project. The
function also logs project analysis events, which can help with troubleshooting persistent project
analysis issues. Note that when you run the function, the function closes and reopens the project.

For more information, see the utility function padv.util.forceReanalyzeProject.

Note You should only use the function padv.util.forceReanalyzeProject when there are
unexpected project analysis issues. When you clear the existing project analysis file, you might
permanently lose important information, including the UUIDs that the digital thread assigned to
artifacts in your project. Reanalyzing a project might take some time to complete. The
artifacts.dmr file might be used by other project users and if you use other tools that use the
digital thread, you might need to re-run the metrics in those tools.

For general task and result cleanup, use runprocess instead. The runprocess function has name-
value arguments, Clean and DeleteOutputs, that you can use to clean task results and delete task
outputs. For information, see runprocess.

See Also
generateProcessTasks | padv.util.forceReanalyzeProject | runprocess

Related Examples
• “Resolve Missing Artifacts, Links, and Results”

2 Customize Your Process Model

2-76

Integrate Process into CI

3

Approaches to Running Processes in CI
With the support package CI/CD Automation for Simulink Check, you can define a process for your
team and set up your CI system to automatically run that process when you push code changes to
your repository, create a pull request, or perform other pipeline triggering events. By automatically
running your process, you can help your team find and fix problems in the software and improve
software quality. For more information on CI workflows and benefits, see “Develop and Integrate
Software with Continuous Integration”.

Before You Integrate
Your process model file defines the pipeline of tasks that the runprocess function runs in CI. If you
do not already have a process model, the support package includes process model templates that you
can use to get started. For more information, see “Automate and Run Tasks with Process Advisor” on
page 1-2.

Before you try to run your process as part of an automated pipeline of tasks in CI, you need to
connect your CI platform, remote repository, and project.

1 Choose a CI platform to run MATLAB. MATLAB integrates with common CI platforms like
GitHub®, GitLab®, Jenkins®, and other CI platforms.

2 Create a remote repository for your project. Many platforms, like GitHub and GitLab, provide
source-controlled remote repositories as part of their platform. For other CI platforms, like
Jenkins, you need to host your remote repository on another platform. See the documentation for
your chosen CI platform to identify how you want to set up your remote repository.

3 Set up a CI agent. Your CI agent machine is responsible for running MATLAB and communicating
the results back to your chosen CI platform. Depending on the CI platform, you can set up the
platform to run MATLAB on your own, self-hosted machine or in the cloud. Make sure that your
CI agent can run MATLAB and that you install the support package and any other products
required by your process. For more information, see “Tips for Setting Up CI Agents” on page 3-
28.

4 Connect your project, remote repository, and CI platform. On the Project tab, in the Source
Control section, click Remote and specify the URL for your remote repository. For more
information, see “Use Source Control with MATLAB Projects”.

5 Make sure that your process model file is available on the MATLAB path for your CI agent. As a
best practice, keep your process model file in the project root folder and add the process model
file to the project.

Depending on your CI platform, you have different options for how to configure and run your process
in CI.

GitHub
Basic Integration

You can manually author a GitHub Actions workflow file that opens your project and runs your
process as part of a workflow. In the file, you can define a sequence of steps that checks out your
repository code, opens your project using the openProject function, and runs your process using
the runprocess function. To access an example workflow file and project, enter
processAdvisorGitHubExampleStart at the MATLAB command line.

3 Integrate Process into CI

3-2

https://www.mathworks.com/matlabcentral/fileexchange/115220-ci-cd-automation-for-simulink-check

Recommended Integration

For a more robust and customizable CI integration, you can generate GitHub Actions workflow file for
your process by using the pipeline generator in the support package. When you use the generated
files in the workflow that you define in the .github/workflows directory of your repository, your
project can create a pipeline of tasks for your process in CI. You can create pipelines that separate
your tasks into different jobs and use other custom pipeline behaviors.

For more information, see “Integrate Process into GitHub” on page 3-5.

GitLab
Basic Integration

You can modify the MATLAB YAML template to run the openProject and runprocess functions as
commands in GitLab. For more information, see Use MATLAB with GitLab CI/CD.

Recommended Integration

For a more robust and customizable CI integration, use the Process Advisor YAML template as your
pipeline YAML file (.gitlab-ci.yml). After you add the template to your project and perform a one-
time setup, your project can automatically create pipelines with different jobs for each task in your
process in CI. You can reconfigure the template to create pipelines that separate your tasks into
different jobs and use other custom pipeline behaviors. The template uses the pipeline generator to
analyze your project and process model to automatically generate the necessary pipeline files for you,
so that you do not need to manually update those files when you make changes to the tasks and
artifacts in your project. Inside the script section of the template, you specify the pipeline
generation options.

For more information, see “Integrate Process into GitLab” on page 3-8.

Jenkins
Basic Integration

You can install the MATLAB plugin on your Jenkins agent and use the Run MATLAB Command build
step to open your project and run your process with the openProject and runprocess functions.
For more information, see the plugin on Jenkins Plugins Index.

Recommended Integration

For a more robust and customizable CI integration, use the Process Advisor Jenkinsfile template.
After you add the template to your project and perform a one-time setup, your project can
automatically create pipelines with different jobs for each task in your process in CI. You can
reconfigure the template to create pipelines that separate your tasks into different jobs and use other
custom pipeline behaviors. The template uses the pipeline generator to analyze your project and
process model and automatically generate the necessary pipeline files for you, so that you do not
need to manually update those files when you make changes to the tasks and artifacts in your project.
Inside the Pipeline Generation stage of the template, you specify the pipeline generation
options.

For more information, see “Integrate Process into Jenkins” on page 3-14.

 Approaches to Running Processes in CI

3-3

https://github.com/mathworks/matlab-gitlab-ci-template/blob/main/README.md
https://plugins.jenkins.io/matlab/

Other Platforms
For other platforms, you can use the matlab command with the -batch option in your CI system.
You can use matlab -batch to run MATLAB code, including the openProject and runprocess
functions, noninteractively. For example, matlab -batch "openProject(pwd);runprocess();"
starts MATLAB noninteractively, opens the project in the current working directory, and runs each of
the tasks in the pipeline defined by the available process model file (processmodel.p or
processmodel.m). MATLAB terminates automatically with the exit code 0 if the specified code
executes successfully without generating an error. Otherwise, MATLAB terminates with a nonzero
exit code.

For more information, see “Continuous Integration with MATLAB on CI Platforms”.

See Also
matlab | openProject | padv.pipeline.generatePipeline | runprocess

Related Examples
• “How Pipeline Generation Works” on page 3-21
• “Integrate Process into GitHub” on page 3-5
• “Integrate Process into GitLab” on page 3-8
• “Integrate Process into Jenkins” on page 3-14
• “Tips for Setting Up CI Agents” on page 3-28

3 Integrate Process into CI

3-4

Integrate Process into GitHub
You can define a process for your team and set up your CI system to run the tasks in that process as a
pipeline in CI using the CI/CD Automation for Simulink Check support package.

In this example, you connect a project to GitHub and generate a GitHub Actions workflow file for the
project and its process model by using the pipeline generator. You can specify the pipeline generator
options to create pipelines that separate tasks into different jobs and use other custom pipeline
behaviors.

This example shows the recommended way to use your process in GitHub. Alternatively, you can
manually author a GitHub Actions workflow file that opens your project and runs your process. For
more information, “Approaches to Running Processes in CI” on page 3-2.

Set Up GitHub Project and Runner
To set up the CI system, you need to set up a source-controlled remote repository where you store
your project and a CI agent machine that can run your pipeline on that repository. For this example,
you can use GitHub as both your remote repository and CI system, and then create a self-hosted
GitHub runner to run your pipelines.

1 In GitHub, create a private GitHub repository. For information, see Quickstart for repositories in
the GitHub documentation. Make sure GitHub Actions is enabled for your repository.

2 Create a self-hosted runner. See the GitHub documentation for Adding self-hosted runners.
3 Install MATLAB, Simulink, Simulink Check, the CI/CD Automation for Simulink Check support

package, and any other products that your process requires on the machine that your GitHub
runner is running on. Make sure that your GitHub runner machine can access and run MATLAB
before you continue.

For information on licensing considerations, Docker® containers, and virtual displays, see “Tips for
Setting Up CI Agents” on page 3-28.

Connect MATLAB Project to GitHub
You need to connect your MATLAB project to your remote repository so that you can push your
changes to the remote GitHub repository and allow GitHub to automate a CI pipeline for the project.

1 Open a project in MATLAB. For this example, open an example project that uses the process
defined by an example process model.

processAdvisorExampleStart

The process model, processmodel.m, is at the root of the project and defines a process with
common model-based design tasks. You can use the Process Advisor app to run the tasks in the
process on your local machine. For information on how to create and customize a process model
for your development and verification workflow, see “Customize Your Process Model”.

2 On the Project tab, in the Source Control section, click Remote and specify the URL for the
remote origin in GitHub where your repository is hosted. For example, https://github.com/
user/repo.git.

The example project is already set up to use local Git™ source control. For information on how to
use source control with your projects, see “Use Source Control with MATLAB Projects”.

 Integrate Process into GitHub

3-5

https://www.mathworks.com/matlabcentral/fileexchange/115220-ci-cd-automation-for-simulink-check
https://docs.github.com/en/get-started/quickstart/create-a-repo
https://docs.github.com/en/actions/hosting-your-own-runners/managing-self-hosted-runners/adding-self-hosted-runners

Generate Pipeline Configuration File
You generate the GitHub Actions workflow file by using the pipeline generator.

1 In MATLAB, configure the pipeline generation options by creating a
padv.pipeline.GitHubOptions object and specifying the location of your MATLAB
installation for your runner.

The padv.pipeline.GitHubOptions object stores the options for the pipeline generator. You
can modify the other properties of the object to customize how the pipeline generator creates
your pipeline configuration file. For example, you can create a
padv.pipeline.GitHubOptions object for a GitHub runner that uses a MATLAB installation
at /opt/matlab/r2023a.

GitHubOptions = padv.pipeline.GitHubOptions
GitHubOptions.MatlabInstallationLocation = "/opt/matlab/r2023a";

By default, GitHubOptions specifies a SingleStage pipeline architecture that runs all the
tasks in the process within a single stage in CI. To change the number of stages or the grouping
of tasks in the CI pipeline, specify the PipelineArchitecture property of your
padv.pipeline.GitHubOptions object.

2 Generate a pipeline configuration file for your project by calling the
padv.pipeline.generatePipeline function on your padv.pipeline.GitHubOptions
object.

padv.pipeline.generatePipeline(GitHubOptions)

By default, the generated pipeline configuration file is named simulink_pipeline.yml and is
located under the project root, in the subfolder derived > pipeline.

The generated pipeline configuration file uses the following GitHub Actions:

• checkout@v3
• cache@v3
• upload-artifact@v3
• download-artifact@v3

Use Pipeline Configuration File in GitHub Actions Workflow
To use the generated pipeline configuration file in your GitHub repository, you need to create a
workflow and update the workflow file.

1 In GitHub, create a GitHub Actions workflow by creating a directory .github/workflows and
creating a new YAML file github-actions-demo.yml. See https://docs.github.com/en/actions/
quickstart#creating-your-first-workflow.

2 In MATLAB, open your generated pipeline configuration file and copy the file contents.
3 In GitHub, paste the contents of simulink_pipeline.yml inside the github-actions-

demo.yml file.
4 Check the new github-actions-demo.yml file into your repository by committing the changes

and creating a pull request.

After you commit your changes, GitHub automatically runs the workflow file, github-actions-
demo.yml. You can see your process running when you click on the Actions tab. For information on

3 Integrate Process into CI

3-6

https://docs.github.com/en/actions/quickstart#creating-your-first-workflow
https://docs.github.com/en/actions/quickstart#creating-your-first-workflow

the GitHub workflow results, see https://docs.github.com/en/actions/quickstart#viewing-your-
workflow-results.

See Also
padv.pipeline.generatePipeline | padv.pipeline.GitHubOptions

Related Examples
• “Approaches to Running Processes in CI” on page 3-2
• “How Pipeline Generation Works” on page 3-21
• “Tips for Setting Up CI Agents” on page 3-28

 Integrate Process into GitHub

3-7

https://docs.github.com/en/actions/quickstart#viewing-your-workflow-results
https://docs.github.com/en/actions/quickstart#viewing-your-workflow-results

Integrate Process into GitLab
You can define a process for your team and set up your continuous integration (CI) system to
automatically run the tasks in that process as a pipeline by using the CI/CD Automation for Simulink
Check support package. The support package includes a GitLab template that defines CI jobs for each
task in your process. You can reconfigure the template file to separate your tasks into different jobs
and customize other pipeline behaviors. The template file uses the pipeline generator to automatically
generate pipelines for you, so that you do not need to manually update CI/CD configuration files when
you make changes to your project or processes.

This example shows the how to:

• Set up a GitLab project and CI agent.
• Connect a MATLAB project to GitLab.
• Perform a one-time setup of a GitLab template file to work with your CI setup.
• Push changes to source control and inspect the automatically generated pipeline.

This example shows the recommended way to use your process in GitLab. Alternatively, you can
manually author a pipeline configuration file that opens your project and runs your process as part of
your build. For more information, “Approaches to Running Processes in CI” on page 3-2.

Set Up GitLab Project and Runner
Set up a source-controlled remote repository where you store your project and a CI agent machine
that can run your pipeline on that repository. For this example, you can use GitLab as both your
remote repository and CI system, and then create a GitLab Runner to run your pipelines.

1 In GitLab, set up a remote repository by creating a new blank project. See the GitLab
documentation for Create a project.

2 Install, register, and start a GitLab Runner on a machine. The GitLab Runner application allows a
machine to act as a CI agent in GitLab. If you assign a tag to your Runner, make note of the tag
name. See the GitLab documentation for Install GitLab Runner.

3 Install MATLAB, Simulink, Simulink Check, the CI/CD Automation for Simulink Check support
package, and any other products that your process requires on the machine that has your GitLab
Runner. Make sure that your GitLab Runner machine can access and run MATLAB before you
continue.

For information on licensing considerations, Docker containers, and virtual displays, see “Tips for
Setting Up CI Agents” on page 3-28.

Note To run CI jobs in parallel, you must either:

• Have multiple runners available.
• Configure your runner to run multiple jobs concurrently by specifying the concurrent setting.

See the GitLab documentation for Advanced configuration.

3 Integrate Process into CI

3-8

https://www.mathworks.com/matlabcentral/fileexchange/115220-ci-cd-automation-for-simulink-check
https://www.mathworks.com/matlabcentral/fileexchange/115220-ci-cd-automation-for-simulink-check
https://docs.gitlab.com/ee/user/project/index.html#create-a-blank-project
https://docs.gitlab.com/runner/install/index.html
https://docs.gitlab.com/runner/configuration/advanced-configuration.html

Connect MATLAB Project to GitLab
Connect your MATLAB project to your remote repository so that you can push your changes to the
remote GitLab repository and allow GitLab to automate a CI pipeline for the project.

1 Open a project in MATLAB. For this example, open an example project that uses an example
process model.

processAdvisorExampleStart

The process model, processmodel.m, is at the root of the project and defines a process with
common model-based design tasks. You can use the Process Advisor app to run the tasks in the
process on your local machine. You can copy the default process model template into a project by
entering createprocess(Template = "default") at the command line. For information on
how to customize a template process model for your development and verification workflow, see
“Customize Your Process Model”.

2 In MATLAB, on the Project tab, in the Source Control section, click Remote and specify the
URL for the remote origin in GitLab where your repository is hosted. For example, https://
gitlab.com/gitlab-org/gitlab.git.

The example project is already set up to use local Git source control. For information on how to
use source control with your projects, see “Use Source Control with MATLAB Projects”.

Configure Template to use GitLab Runner
In GitLab, you define your CI pipelines by using a CI/CD configuration file, typically named .gitlab-
ci.yml, in your project root. The support package includes a GitLab template file that you can
reconfigure and then use to automatically generate pipelines.

1 Copy the GitLab template into your project folder. The GitLab template file is generic and can
work with any project. In MATLAB, change your current folder to your project root and enter:

GitLabTemplate = fullfile(...
matlabshared.supportpkg.getSupportPackageRoot,...
"toolbox","padv","samples",".gitlab-ci-pipeline-gen.yml");

copyfile(GitLabTemplate,".gitlab-ci.yml")
2 In the Project pane, add the template file, .gitlab-ci.yml, to your project. The template file

contains a CI pipeline definition for GitLab.
3 Open and inspect the template file. The file uses GitLab CI/CD YAML syntax to define a parent

pipeline that can generate and execute pipelines for you.
4 Reconfigure the template to work for your CI setup. In the template, find and replace instances of

padv_demo_ci with the tag name of the GitLab Runner that you want to use.

For example, if your GitLab Runner has the tag name high_memory, you specify that tag in the
tags section and in the pipeline generation options object padv.pipeline.GitLabOptions.

 Integrate Process into GitLab

3-9

The template file can then generate a GitLab pipeline with stages for each task in your process the
next time that you push your changes to your remote repository. Optionally, you can further customize
the template file to change how the pipeline generator organizes and executes the pipeline. You can
dry run your tasks, separate your tasks into different jobs, and specify other options by using the
padv.pipeline.GitLabOptions object in the template.

Make Optional Customizations
Optionally, you can reconfigure the template file to customize how the pipeline generator organizes
and executes the pipeline. To customize the pipeline generator options, modify the property values of
the padv.pipeline.GitLabOptions object in the template.

For example, suppose that you want to:

• Dry run tasks to quickly validate task inputs and generate representative outputs without
performing the full task operation.

• Perform license checkouts during the dry runs to make sure that your GitLab Runner has access
to the required products.

• Separate tasks into different jobs.

To change how the template file generates the pipeline, you can modify the
padv.pipeline.GitLabOptions in the script section.

 script:
 # Open the project and generate the pipeline using
 # appropriate options in project root
 - >
 matlab
 -nodesktop
 -logfile "$MATLAB_LOG_FILE"

3 Integrate Process into CI

3-10

 -batch "
 cp = openProject(pwd);
 rpo = padv.pipeline.RunProcessOptions;
 rpo.DryRun = true;
 rpo.DryRunLicenseCheckout = true;
 padv.pipeline.generatePipeline(
 padv.pipeline.GitLabOptions(
 PipelineArchitecture = padv.pipeline.Architecture.SerialStagesGroupPerTask,
 RunprocessCommandOptions = rpo,
 Tags = 'padv_demo_ci',
 GeneratedYMLFileName = 'simulink_pipeline.yml',
 GeneratedPipelineDirectory = fullfile('derived','pipeline')));
 "

This example code creates a padv.pipeline.RunProcessOptions object, rpo, that customizes
the behavior of the runprocess function in CI. This code specifies the runprocess arguments
DryRun and DryRunLicenseCheckout as true, updates the padv.pipeline.GitLabOptions
object to use the PipelineArchitecture SerialStagesGroupPerTask, and uses the
RunprocessCommandOptions specified by rpo. For more information, see “How Pipeline
Generation Works” on page 3-21.

If you modify other parts of the template file, make sure that your changes use valid GitLab CI/CD
YAML syntax. For more information, see the GitLab documentation for CI/CD YAML syntax reference.

Generate Pipeline in GitLab
Commit and push the MATLAB project to your GitLab repository by using the Commit and Push
buttons in the Source Control section of the Project tab. By default, GitLab uses .gitlab-ci.yml
as the CI/CD configuration file to automatically create pipelines when triggered.

Each time you submit changes to this remote repository, GitLab generates and executes a custom
pipeline for your project, process, and pipeline generation options. You do not need to update
the .gitlab-ci.yml file when you make changes to your projects or process model. The pipeline
generator automatically generates up-to-date pipelines by using the latest project and process model.
You only need to update the .gitlab-ci.yml file if you want to change how the pipeline generator
organizes and executes the pipeline.

In GitLab, your pipeline contains two upstream jobs:

• SimulinkPipelineGeneration — Generates a child pipeline file.
• SimulinkPipelineExecution — Executes the child pipeline file. By default, the child pipeline

contains:

• Jobs for your process, organized by the PipelineArchitecture property specified in
padv.pipeline.GitLabOptions.

• The Generate_PADV_Report job, which generates a Process Advisor build report.
• The Collect_Artifacts job, which collects build artifacts.

 Integrate Process into GitLab

3-11

https://docs.gitlab.com/ee/ci/yaml/index.html

Optional Customizations
You can reconfigure the template file to customize how the pipeline generator organizes and executes
the pipeline. To customize the pipeline generator options, you modify the property values of the
padv.pipeline.GitLabOptions object in the template.

For example, suppose that you want to:

• Dry run tasks to quickly validate task inputs and generate representative outputs without
performing the full task operation.

• Perform license checkouts during the dry runs to make sure that your GitLab Runner has access
to the required products.

• Separate tasks into different jobs.

To change how the template file generates the pipeline, you can modify the
padv.pipeline.GitLabOptions in the script section.

 script:
 # Open the project and generate the pipeline using
 # appropriate options in project root
 - >
 matlab
 -nodesktop
 -logfile "$MATLAB_LOG_FILE"
 -batch "
 cp = openProject(pwd);
 rpo = padv.pipeline.RunProcessOptions;
 rpo.DryRun = true;
 rpo.DryRunLicenseCheckout = true;
 padv.pipeline.generatePipeline(
 padv.pipeline.GitLabOptions(
 PipelineArchitecture = padv.pipeline.Architecture.SerialStagesGroupPerTask,
 RunprocessCommandOptions = rpo,
 Tags = 'padv_demo_ci',
 GeneratedYMLFileName = 'simulink_pipeline.yml',
 GeneratedPipelineDirectory = fullfile('derived','pipeline')));
 "

This example code creates a padv.pipeline.RunProcessOptions object, rpo, for customizing the
behavior of the runprocess function in CI. In this case, specifying the runprocess arguments
DryRun and DryRunLicenseCheckout as true. The code updates the
padv.pipeline.GitLabOptions object to use the PipelineArchitecture
SerialStagesGroupPerTask and use the RunprocessCommandOptions specified by rpo. For
more information, see “How Pipeline Generation Works” on page 3-21.

If you modify other parts of the template file, make sure that your changes use valid GitLab CI/CD
YAML syntax. For more information, see https://docs.gitlab.com/ee/ci/yaml/index.html.

See Also
padv.pipeline.generatePipeline | padv.pipeline.GitLabOptions

Related Examples
• “Approaches to Running Processes in CI” on page 3-2

3 Integrate Process into CI

3-12

https://docs.gitlab.com/ee/ci/yaml/index.html

• “How Pipeline Generation Works” on page 3-21
• “Tips for Setting Up CI Agents” on page 3-28

 Integrate Process into GitLab

3-13

Integrate Process into Jenkins
You can define a development and verification process for your team and run that process as a
pipeline in CI using the CI/CD Automation for Simulink Check support package. For Jenkins, you
configure your pipeline by using a Jenkinsfile that you store in your project. The Jenkinsfile
can configure different parts of your CI/CD jobs including the stages of the job, the label for the
Jenkins agent that executes the pipeline, the script that the agent executes, and artifacts you want to
attach to a successful job. The support package provides a template Jenkinsfile that you can
reconfigure and use to run your process. The template file uses the pipeline generator to
automatically generate pipelines for you, so that you do not need to manually update pipeline
configuration files when you make changes to the tasks and artifacts in your project.

This example shows the recommended way to use your process in Jenkins. Alternatively, you can run
your process as a build step. For more information, “Approaches to Running Processes in CI” on page
3-2.

Set Up Jenkins
1 Install Jenkins. See the Jenkins documentation for Installing Jenkins.
2 Install the following plugins for Jenkins:

• MATLAB Plugin for Jenkins. See MATLAB plugin on Jenkins Plugins Index.
• Jenkins Core Plugin, which allows pipelines to archive artifacts using the archiveArtifacts

step. See the Jenkins documentation for archiveArtifacts.
• JUnit Plugin, which allows Jenkins to show test failures and trends directly in the user

interface. See JUnit plugin on Jenkins Plugins Index.
• Job Cacher Plugin, which allows Jenkins to store caches. See Job Cacher plugin on Jenkins

Plugins Index.

The pipeline generator requires the skipSave parameter that was introduced in plugin
version 399.v12d4fa_dd3db_d. Pipeline generation was tested using plugin version
481.v15f51ca_4c6b_7.

3 Install MATLAB, Simulink, Simulink Check, the CI/CD Automation for Simulink Check support
package, and any other products that your process requires on your Jenkins agent. Make sure
that your Jenkins agent machine can access and run MATLAB before you continue.

4 Configure at least 3 executors on your Jenkins instance. Executors control the number of
concurrent tasks or builds Jenkins can run. The number of required executors depends on the
pipeline architecture that you select. You must have at least 3 executors configured and available
to load, generate, and execute your pipeline using the pipeline generator. If you are using the
IndependentModelPipelines pipeline architecture, you need at least 3 executors, plus an
additional executor for each model in your project. For more information, see
PipelineArchitecture. For information on defining Jenkins executors, see Managing Nodes.

5 Create a new Jenkins pipeline project, but leave your Jenkinsfile pipeline definition empty for
now. See the Jenkins documentation for Getting started with Pipeline. Instead of manually writing
a Jenkinsfile, you reconfigure the template Jenkinsfile, add that file to your MATLAB
project, and use that file to define your pipelines as shown in “Configure and Use Jenkinsfile
Template” on page 3-15.

For information on licensing considerations, Docker containers, and virtual displays, see “Tips for
Setting Up CI Agents” on page 3-28.

3 Integrate Process into CI

3-14

https://www.mathworks.com/matlabcentral/fileexchange/115220-ci-cd-automation-for-simulink-check
https://www.jenkins.io/doc/book/installing/
https://plugins.jenkins.io/matlab/
https://www.jenkins.io/doc/pipeline/steps/core/#archiveartifacts-archive-the-artifacts
https://plugins.jenkins.io/junit/
https://plugins.jenkins.io/jobcacher/
https://plugins.jenkins.io/jobcacher/
https://www.jenkins.io/doc/book/managing/nodes/
https://www.jenkins.io/doc/book/pipeline/getting-started/

Connect Jenkins Project to Repository
To set up your CI system, you need to set up a source-controlled remote repository where you store
your MATLAB project and you need to connect that repository to your Jenkins project.

For this example, you can set up a GitLab repository and connect that repository to Jenkins.

1 Set up a remote GitLab repository by creating a new blank project. See the GitLab
documentation for Create a project.

2 Connect your MATLAB project to the remote repository.

For this example, you can open the Process Advisor example project
processAdvisorExampleStart and, on the Project tab, in the Source Control section, click
Remote to specify the URL for the remote origin in GitLab where your repository is hosted. For
example, https://gitlab.com/gitlab-org/gitlab.git.

The process model, processmodel.m, is at the root of the project and defines a process with
common model-based design tasks. You can use the Process Advisor app to run the tasks in the
process on your local machine. You can copy the default process model template into a project by
entering createprocess(Template = "default") at the command line. For information on
how to customize a template process model for your development and verification workflow, see
“Customize Your Process Model”.

3 Configure GitLab integration with Jenkins. See GitLab documentation for Jenkins integration.

Configure and Use Jenkinsfile Template
For Jenkins, you can define your CI pipelines by using a Jenkinsfile. The support package includes
a Jenkinsfile template that you can reconfigure and then use to automatically generate pipelines.

1 In your MATLAB project, change your current folder to your project root and copy the template
Jenkinsfile file into your project. The template Jenkinsfile is generic and can work with
any project.

exampleJenkinsfile = fullfile(...
matlabshared.supportpkg.getSupportPackageRoot,...
"toolbox","padv","samples","Jenkinsfile_pipeline_gen");

copyfile(exampleJenkinsfile,"Jenkinsfile")
2 Open and inspect the template Jenkinsfile in your project. The file defines a pipeline that

checks out code from a specified Git repository, specifies MATLAB environment information, and
then uses MATLAB to generate and execute a pipeline file for your specific project and process.
The template uses the pipeline generator function, padv.pipeline.generatePipeline to
generate the pipeline stages and the object padv.pipeline.JenkinsOptions to specify the
pipeline generation options.

3 In your Jenkinsfile, update the file to use the:

• Git branch, credentialsId, and url for your repository. For example:

git branch: 'testBranch',
credentialsId: 'jenkins-common-creds',
url: 'git://example.com/my-project.git'

• Path to the bin directory for your MATLAB installation. For example:

 Integrate Process into Jenkins

3-15

https://docs.gitlab.com/ee/
https://docs.gitlab.com/ee/integration/jenkins.html

env.PATH = "C:\\Program Files\\MATLAB\\R2024b\\bin;${env.PATH}" // Windows
// env.PATH = "/usr/local/MATLAB/R2024b/bin:${env.PATH}" // Linux
// env.PATH = "/Applications/MATLAB_R2024b.app/bin:${env.PATH}" // macOS

withEnv(["PATH=C:\\Program Files\\MATLAB\\R2024b\\bin;${env.PATH}"]) { // Windows
// withEnv(["PATH=/usr/local/MATLAB/R2024b/bin:${env.PATH}"]) { // Linux
// withEnv(["PATH=/Applications/MATLAB_R2024b.app/bin:${env.PATH}"]) { // macOS

Now your Jenkinsfile file contains the Git repository information and path to the MATLAB
installation for your CI setup.

4 Add the Jenkinsfile to your project.
5 Push the changes to your project to source control.
6 Configure your Jenkins project to use the Jenkinsfile in source control.

a In the Pipeline section of the project configuration window, select Pipeline script from
SCM from the Definition list.

b Select your source control system from the SCM list.
c Paste your repository URL into the Repository URL box.

For more information, see Plugin Configuration Guide (GitHub).

3 Integrate Process into CI

3-16

https://github.com/jenkinsci/matlab-plugin/blob/master/CONFIGDOC.md

At this point, the template file is set up to generate a Jenkins pipeline, with stages for each task in
your process, the next time that you trigger a build. Optionally, you can further customize the
template file to change how the pipeline generator organizes and executes the pipeline. You can dry
run your tasks, have separate stages for each task iteration in the process, and specify other options
by using the padv.pipeline.JenkinsOptions object in the template.

Make Optional Customizations
Optionally, you can reconfigure the template file to customize how the pipeline generator organizes
and executes the pipeline. To customize the pipeline generator options, you modify the property
values of the padv.pipeline.JenkinsOptions object in the template.

For example, suppose that you want to:

• Dry run tasks to quickly validate task inputs and generate representative outputs without
performing the full task operation.

• Perform license checkouts during the dry runs to make sure that your Jenkins agent has access to
the required products.

• Have stages for each task iteration in the process.

To change how the template file generates the pipeline, you can modify the
padv.pipeline.JenkinsOptions in the runMATLABCommand in the Pipeline Generation
stage.

 // Requires MATLAB plugin
 stage('Pipeline Generation'){

 env.PATH = "C:\\Program Files\\MATLAB\\R2024b\\bin;${env.PATH}" // Windows
 // env.PATH = "/usr/local/MATLAB/R2024b/bin:${env.PATH}" // Linux
 // env.PATH = "/Applications/MATLAB_R2024b.app/bin:${env.PATH}" // macOS

 /* Open the project and generate the pipeline using
 appropriate options */

 runMATLABCommand '''cp = openProject(pwd);
 rpo = padv.pipeline.RunProcessOptions;
 rpo.DryRun = true;
 rpo.DryRunLicenseCheckout = true;
 padv.pipeline.generatePipeline(...
 padv.pipeline.JenkinsOptions(...
 RunprocessCommandOptions = rpo,...
 PipelineArchitecture = padv.pipeline.Architecture.SerialStages,...
 GeneratedJenkinsFileName = "simulink_pipeline",...
 GeneratedPipelineDirectory = fullfile("derived","pipeline")));'''
 }

This example code creates a padv.pipeline.RunProcessOptions object, rpo, for customizing the
behavior of the runprocess function in CI. In this case, specifying the runprocess arguments
DryRun and DryRunLicenseCheckout as true. The code updates the
padv.pipeline.JenkinsOptions object to use a different PipelineArchitecture,
SerialStages, and use the RunprocessCommandOptions specified by rpo. For more information,
see “How Pipeline Generation Works” on page 3-21.

If you modify other parts of the template file, make sure that your changes use valid Jenkins pipeline
syntax. For more information, see the Jenkins documentation for Pipeline Syntax.

 Integrate Process into Jenkins

3-17

https://www.jenkins.io/doc/book/pipeline/syntax/

Generate Pipeline in Jenkins
The next time that you trigger a build, your generated pipeline contains two upstream stages in
Jenkins:

• Git_Clone — Loads your Git repository information.
• Pipeline Generation — Automatically generates and loads a pipeline file called

simulink_pipeline that defines downstream stages for your process. By default, the
downstream stages include:

• Stages for your process, organized by the PipelineArchitecture property specified in
padv.pipeline.JenkinsOptions.

• The Generate_PADV_Report stage, which generates a Process Advisor build report.
• The stage, Collect_Artifacts, which collects build artifacts.

See Also
padv.pipeline.generatePipeline | padv.pipeline.JenkinsOptions

Related Examples
• “Approaches to Running Processes in CI” on page 3-2
• “How Pipeline Generation Works” on page 3-21
• “Tips for Setting Up CI Agents” on page 3-28

3 Integrate Process into CI

3-18

Integrate Process into Other CI Platforms
With the CI/CD Automation for Simulink Check support package, you can define a development and
verification process for your team and run that process as a pipeline in CI. You can use any of the
MATLAB-supported Continuous Integration (CI) platforms to run your automated pipeline of tasks.
For more information on the supported platforms, see “Continuous Integration with MATLAB on CI
Platforms”.

Before You Integrate
Your process model file defines the pipeline of tasks that the runprocess function runs in CI. If you
do not already have a process model, the support package includes process model templates that you
can use to get started. For more information, see “Automate and Run Tasks with Process Advisor” on
page 1-2.

Before you try to run your process as part of an automated pipeline of tasks in CI, you need to
connect your CI platform, remote repository, and project.

1 Create a remote repository for your project. Many CI platforms provide source-controlled remote
repositories as part of their platform. But for other CI platforms you might need to host your
remote repository on another platform. See the documentation for your chosen CI platform to
identify how you want to set up your remote repository.

2 Set up a CI agent. Your CI agent machine is responsible for running MATLAB and communicating
the results back to your chosen CI platform. Depending on the CI platform, you can set up the
platform to run MATLAB on your own, self-hosted machine or in the cloud. Make sure that your
CI agent can run MATLAB and that you install the support package and any other products
required by your process. For information on licensing considerations, Docker containers, and
virtual displays, see “Tips for Setting Up CI Agents” on page 3-28.

3 Connect your project, remote repository, and CI platform. On the Project tab, in the Source
Control section, click Remote and specify the URL for your remote repository. For more
information, see “Use Source Control with MATLAB Projects”.

4 Make sure that your process model file is available on the MATLAB path for your CI agent. As a
best practice, keep your process model file in the project root folder and add the process model
file to the project.

Run MATLAB in Batch Mode
To run your process in CI, you can use the matlab command with the -batch option in your CI
system. You can use matlab -batch to run MATLAB code, including the runprocess function,
noninteractively. For example, you can start MATLAB noninteractively, open the project, and run each
of the tasks in the pipeline defined by the process model file (processmodel.p or
processmodel.m) in the project.

matlab -batch "openProject(pwd);[~,exitCode] = runprocess();exit(exitCode);"

MATLAB terminates automatically with the exit code 0 if the specified code executes successfully
without generating an error. Otherwise, MATLAB terminates with a nonzero exit code.

See Also
matlab | runprocess

 Integrate Process into Other CI Platforms

3-19

https://www.mathworks.com/matlabcentral/fileexchange/115220-ci-cd-automation-for-simulink-check

Related Examples
• “Approaches to Running Processes in CI” on page 3-2
• “Best Practices for Effective Builds” on page 3-32
• “Tips for Setting Up CI Agents” on page 3-28

3 Integrate Process into CI

3-20

How Pipeline Generation Works
Typically, when you configure a CI pipeline, you need to manually create and update pipeline
configuration files as you add, remove, and change the artifacts in your project. However, the
example pipeline configuration files use a pipeline generator function,
padv.pipeline.generatePipeline, that can generate the updated pipeline configuration files for
you. After you do the initial setup for the pipeline generator, you do not need to manually update your
pipeline configuration files. When you trigger your pipeline, the pipeline generator uses the digital
thread to analyze the files in your project and uses your process model to generate pipeline
configuration files for you.

Summary of Support
When you use the support package to integrate a model-based design (MBD) project into CI, there
are three main approaches to creating and maintaining your pipeline configuration files:

• Manual Authoring — Each time you need to create or update your pipeline, you manually write,
update, and check-in a pipeline configuration file that uses the runprocess function to run tasks.
This approach allows you the most flexibility and ability to customize your pipeline, but requires
that you regularly maintain the pipeline configuration file.

• Manual Generation — Each time you commit changes, you manually generate a pipeline
configuration file using the padv.pipeline.generatePipeline function in your local MATLAB
installation and then manually check the pipeline configuration file into your CI system. With this
approach, you do not need to manually write the pipeline configuration file, but you do need to
manually regenerate the pipeline for each submission.

• Automatic Generation — You perform a one-time setup of a parent pipeline configuration file that
automatically calls the padv.pipeline.generatePipeline function and automatically
generates an up-to-date, child pipeline configuration file that runs your process in CI. With this
approach, you do not have to manually write or generate pipeline configuration files, but setting
up a branching workflow can be complex.

The following table lists which approaches the support package supports on each CI platform.

Approaches \
Platforms

GitHub GitLab Jenkins Other MATLAB-
Supported CI
Platforms

Manual Authoring ✔ ✔ ✔ ✔
Manual Generation ✔ (recommended) ✔ ✔
Automatic
Generation

 ✔ (recommended) ✔ (recommended)

For CI platforms, you typically define your CI pipeline by using a pipeline configuration file. For
example, a YAML file on platforms like GitHub and GitLab or a Jenkinsfile on Jenkins.

Typically, when you configure a CI pipeline, you need to manually create and update your pipeline
configuration files as you add, remove, and change the artifacts in your project. However, the support
package has a pipeline generator function padv.pipeline.generatePipeline that you can use to
generate the pipeline configuration files for GitHub, GitLab, and Jenkins.

 How Pipeline Generation Works

3-21

For example, on a CI platform like GitLab, the pipeline generator can automatically generate the
pipeline configuration files that you would need to create a pipeline that runs each job in your
process, generate a report, and collect the artifacts from the pipeline.

Generated Pipelines
After you perform the initial setup and trigger your pipeline, the pipeline generator generates a
parent pipeline and a child pipeline.

The parent pipeline contains two stages:

• Simulink Pipeline Generation — This stage analyzes your project and process model to
automatically generate the pipeline configuration files to run your process in CI. If you want to
view the generated pipeline configuration files, the pipeline generator stores the files under the
derived > pipeline folder in the project.

• Simulink Pipeline Execution — This stage creates and executes a child pipeline that runs the
tasks in your process, generates a build report, and collects the job artifacts.

By default, the child pipeline contains:

• One stage for each task in your process model.
• One stage that generates a build report, ProcessAdvisorReport.pdf.
• One stage that collects the job artifacts and compresses the artifacts into a zip file,

padv_artifacts.zip.

Optional Pipeline Customization
You can run the pipeline generator using the default options or you can edit the example pipeline
configuration file to customize how the pipeline generator creates and executes pipelines in CI.

The call to the pipeline generator function (padv.pipeline.generatePipeline) is in the example
pipeline configuration file. The function padv.pipeline.generatePipeline requires you to
specify a CI options object as an input.

The CI options object allows you to specify several properties of the generated CI pipeline, including:

3 Integrate Process into CI

3-22

• the pipeline architecture
• whether the pipeline generates a build report
• if and when the pipeline collects artifacts from the build

Pipeline Architecture

The pipeline architecture defines the number of stages and the grouping of tasks in the child pipeline.
You can specify the pipeline architecture by using a padv.pipeline.Architecture object.

By default, the example pipeline configuration files specify the pipeline architecture as
SerialStagesGroupPerTask, which creates one stage for each task in the process model. For
example, one stage for TaskA and one stage for TaskB.

The available pipeline architectures are:

• SingleStage — A single stage, Runprocess, that runs all the tasks in the process.
• SerialStages — One stage for each task iteration in the process.
• SerialStagesGroupPerTask — One stage for each task in the process.
• IndependentModelPipelines — Parallel, downstream pipelines for each model. Each pipeline

independently runs the tasks associated with the model. For information how parallel pipeline
architecture work and process considerations, see “Parallel Pipeline Architectures” on page 3-24.

Build Report

By default, the pipeline generator creates a stage, Generate_PADV_Report, that generates a build
report for your pipeline. The build report is a PDF file ProcessAdvisorReport.pdf.

If you do not want to generate a report, you can specify the GenerateReport argument as false.
For example, in a GitLab pipeline configuration file:

padv.pipeline.GitLabOptions(GenerateReport = false)

Build Artifacts

By default, the pipeline generator creates a stage, Collect_Artifacts, that collects and compresses
the build artifacts from your pipeline. The ZIP file attached to the Collect_Artifacts stage is called
padv_artifacts.zip. You can download these artifacts to locally reproduce issues seen in CI. For
more information, see “Locally Reproduce Issues Found in CI” on page 1-20.

 How Pipeline Generation Works

3-23

You can specify if and when you want the pipeline to collect artifacts by specifying the argument
EnableArtifactCollection:

• "never", 0, or false — Never collect artifacts
• "on_success" — Only collect artifacts when the pipeline succeeds
• "on_failure" — Only collect artifacts when the pipeline fails
• "always", 1, or true — Always collect artifacts

For example, in a GitLab pipeline configuration file:

padv.pipeline.GitLabOptions(EnableArtifactCollection="on_failure")

Parallel Pipeline Architectures
Starting in R2023b Update 5, the pipeline generator supports a round-trip, parallel CI workflow that
automatically merges the task statuses and project analysis performed in parallel. By default, Process
Advisor and the build system store task statuses and project analysis in an artifact database file,
artifacts.dmr. If you use a parallel pipeline architecture like IndependentModelPipelines, the
pipeline generator needs to merge artifact database files from across different parallel jobs.
Depending on your process model, the pipeline generator can automatically add these stages to the
generated pipeline:

• Create_Base_Artifact_Database — Before running your parallel jobs, the pipeline generator
creates a common ancestor artifact database file, base.dmr, that the pipeline generator can use
when merging the task statuses and project analysis performed in the parallel. This stage uses the
utility function padv.util.saveArtifactDatabase to save a copy of the artifact database file.

• Merge_Artifact_Databases — After running your parallel jobs, the pipeline generator merges the
artifact database files created by each parallel branch with the common ancestor artifact database
file base.dmr. This stage uses the utility function padv.util.mergeArtifactDatabases to
merge the artifact database files into a single artifacts.dmr file that contains the information
from the parallel branches.

If your process model includes code generation and code analysis, the pipeline generator can
automatically merge the artifact database files as part of your top model code generation stage.
For more information, see “Considerations for Parallel Code Generation”.

When you download your CI artifacts onto your machine, this merged artifacts.dmr file allows you
to see up-to-date task statuses locally in Process Advisor. The Collect_Artifacts stage automatically
includes the artifacts.dmr file inside the derived folder in the artifacts.zip file.

Considerations for Parallel Code Generation

Starting in R2023b Update 5, if you want to use a parallel pipeline architecture and your process
contains code generation and code analysis tasks, you need to either use the example parallel process
model or update your existing process model. These updates allow the tasks in your pipeline to
properly handle shared utilities and code generated across parallel jobs.
Example Parallel Process Model

To see the example parallel process model, you can either:

• Open the Process Advisor example project for parallel pipelines:

processAdvisorParallelExampleStart

3 Integrate Process into CI

3-24

• Create a parallel process model using the parallel template:

createprocess(Template = "parallel")

Update Existing Process Model

To update your existing process model for a round-trip parallel CI workflow, you need to:

• Have a task that generates code for your reference models. The task must specify the property
GenerateExternalCodeCache as true and specify an ExternalCodeCacheDirectory. The
external code cache allows your team to generate code in parallel while maintaining up-to-date
task status information. For example:

 % Generate Code for Reference Models
 codegenTask = pm.addTask(padv.builtin.task.GenerateCode("IterationQuery", ...
 padv.builtin.query.FindRefModels));
 codegenTask.UpdateThisModelReferenceTarget = 'IfOutOfDate';
 codegenTask.TreatAsRefModel = true;
 codegenTask.Title = "Reference Model Code Generation";
 codegenTask.GenerateExternalCodeCache = true;
 codegenTask.ExternalCodeCacheDirectory = fullfile(...
 '$DEFAULTOUTPUTDIR$', '$ITERATIONARTIFACT$', 'external_code_cache');

• Have a task that generates code for your top models. The task must iterate over the project file,
specify the property GenerateExternalCodeCache as true, and specify an
ExternalCodeCacheDirectory. The external code cache allows your team to generate code in
parallel while maintaining up-to-date task status information. For example:

 % Generate Code for Top Models (at the project-level)
 codegenTopTask = pm.addTask(padv.builtin.task.GenerateCode("IterationQuery", ...
 padv.builtin.query.FindProjectFile,"InputQueries",...
 {padv.builtin.query.FindTopModels,...
 padv.builtin.query.GetOutputsOfDependentTask(...
 "padv.builtin.task.GenerateCode")},...
 "Name", "Top Model Code Generation"));
 codegenTopTask.UpdateThisModelReferenceTarget = 'IfOutOfDate';
 codegenTopTask.TreatAsRefModel = false;
 codegenTopTask.Title = "Top Model Code Generation";
 codegenTopTask.TrackAllGeneratedCode = true;

• Split code analysis tasks into two tasks. One task for reference models and one task for top
models. The task for top models must iterate over the project file. The built-in code analysis tasks,
like padv.builtin.task.RunCodeInspection, are able to unpack the code generation target
from the external code cache by using the utility function
padv.util.unpackExternalCodeCache.

 % Inspect Generated Code for Reference Models
 slciTask = pm.addTask(padv.builtin.task.RunCodeInspection("IterationQuery", ...
 padv.builtin.query.FindRefModels));
 slciTask.ReportFolder = fullfile(defaultResultPath,'code_inspection');
 slciTask.Title = "Ref Model Code Inspection";

 % Inspect Generated Code for Top Models (at the project-level)
 slciTopTask = pm.addTask(padv.builtin.task.RunCodeInspection("IterationQuery", ...
 padv.builtin.query.FindProjectFile,"InputQueries",...
 {padv.builtin.query.GetOutputsOfDependentTask("Top Model Code Generation"),...
 padv.builtin.query.FindTopModels},"Name","Top Model Code Inspection"));
 slciTopTask.Title = "Top Model Code Inspection";
 slciTopTask.ReportFolder = fullfile('$DEFAULTOUTPUTDIR$','code_inspection',...

 How Pipeline Generation Works

3-25

 '$INPUTARTIFACT$');
 slciTopTask.OutputDirectory = string(fullfile('$DEFAULTOUTPUTDIR$','code_inspection'));

• Update the dependsOn and runsAfter relationships in your process model to specify the
relationships for these tasks.

Note There are limitations to the task relationships that the pipeline generator can support. The
pipeline generator requires your process model to only generate one parallel section. If tasks, like
model tasks, run in parallel, you must define your task relationships so that all subsequent tasks
iterate over the project file. The pipeline generator only supports a single shift from parallel to
serial execution per CI build because the pipeline generator only merges the artifact database
files once.

The pipeline generator does not support, for example, a process model that alternates between
tasks that execute in parallel, then in serial, then parallel again.

The example parallel process model uses top model code generation and code analysis tasks that
iterate over the project file to avoid creating multiple parallel sections.

See Also
padv.pipeline.generatePipeline | padv.pipeline.GitHubOptions |
padv.pipeline.GitLabOptions | padv.pipeline.JenkinsOptions

3 Integrate Process into CI

3-26

Related Examples
• “Approaches to Running Processes in CI” on page 3-2
• “Best Practices for Effective Builds” on page 3-32
• “Tips for Setting Up CI Agents” on page 3-28

 How Pipeline Generation Works

3-27

Tips for Setting Up CI Agents
A CI agent is a machine that is responsible for running MATLAB and communicating the results back
to your chosen CI platform. Depending on the CI platform, you might set up the platform to run
MATLAB on your own, self-hosted machine or in the cloud. Use the following suggestions to help set
up your CI agent.

Product Installation
To use the support package in CI, you need to install at least these products on your CI agent:

• MATLAB
• Simulink
• Simulink Check
• CI/CD Automation for Simulink Check
• Any other products required by your process

You can programmatically install products by using the MATLAB Package Manager (MPM). For more
information, see https://github.com/mathworks-ref-arch/matlab-dockerfile/blob/main/MPM.md.

Note License Considerations for CI: If you plan to perform CI on many hosts or in the cloud,
contact MathWorks® (continuous-integration@mathworks.com) for help. Transformational products
such as MathWorks coder and compiler products might require client access licenses (CAL).

Dry Run Your Process
Before you try to run your process on your CI agent, you can dry run your process. The dry run can
validate your task inputs, generate representative task outputs, and make sure that you have the
required licenses available on your CI agent.

To perform a dry run, you can use the DryRun argument of the runprocess function. For example:

runprocess(DryRun = true)

To automatically check out the licenses associated with the tasks, you can specify the
DryRunLicenseCheckout argument as true:

runprocess(DryRun = true, DryRunLicenseCheckout = true)

Dry runs can be helpful for quickly testing out your CI pipeline and making sure that your required
products and licenses are available, locally and on your CI agents. The built-in tasks have a dryRun
method that generates representative task outputs for that task. You can define your own custom dry
run functionality by overriding the dryRun method for class-based tasks or specifying the task
property DryRunAction for function-based tasks.

For more information on dry runs, see “Dry Run Tasks to Test Process Model” on page 2-66.

3 Integrate Process into CI

3-28

https://www.mathworks.com/matlabcentral/fileexchange/115220-ci-cd-automation-for-simulink-check
https://github.com/mathworks-ref-arch/matlab-dockerfile/blob/main/MPM.md

Set Up Virtual Display Machines Without Displays
Some MATLAB code, including some built-in tasks, can only run successfully if a display is available
for your machine. When there is no display available, MATLAB returns an error.

A machine might not have a display available if either:

• You start MATLAB using the -nodisplay option.
• The machine does not have a display configured and the DISPLAY environment variable is not set.

For example:

• some CI runners
• some containers, including Docker containers by default
• machines that you SSH into without X11 forwarding

If MATLAB returns an error related to your display, try the following workaround.

You can set up a virtual display on the machine to simulate a display environment. The virtual display
allows you to run MATLAB code that requires a display, without having to connect your machine to a
physical display.

1 Choose a server. There are several common servers that you can install and use to host your
virtual display, including:

• Xvfb — https://manpages.ubuntu.com/manpages/trusty/man1/xvfb-run.1.html
• VNC server — https://help.ubuntu.com/community/VNC/Servers

2 Install the server on the machine. For example, to install Xvfb on a Linux® machine:

sudo apt-get install xvfb

Alternatively, for a containerized environment, you can instruct your container image to install
and use the server as the display. For example, to install and use Xvfb for a Docker container,
your Dockerfile can include:

RUN apt-get install --no-install-recommends --yes xvfb
RUN export DISPLAY=:`Xvfb -displayfd 1 &` && \

Tip To access an example Dockerfile that uses Xvfb, enter the following command in MATLAB:

cd(fullfile(matlabshared.supportpkg.getSupportPackageRoot,...
"toolbox","padv","samples"))

3 Run MATLAB in the server environment.

For example, with Xvfb on a Linux machine, you can use the xvfb-run command to run your
MATLAB code with a virtual display. For example:

xvfb-run matlab -batch "openProject(projectPath);runprocess;"

For information, see https://manpages.ubuntu.com/manpages/trusty/man1/xvfb-run.1.html.

 Tips for Setting Up CI Agents

3-29

https://manpages.ubuntu.com/manpages/trusty/man1/xvfb-run.1.html
https://help.ubuntu.com/community/VNC/Servers
https://manpages.ubuntu.com/manpages/trusty/man1/xvfb-run.1.html

Note Depending on which server you choose, you might need to manually start the server and
set the DISPLAY environment variable on your machine to use your virtual display. The DISPLAY
environment variable cannot be left empty.

Since most CI runners and containers do not have a display available, you should set up a virtual
display server before you include the following built-in tasks in your process model:

• padv.builtin.task.GenerateSDDReport
• padv.builtin.task.GenerateSimulinkWebView
• padv.builtin.task.GenerateModelComparison

Create Docker Container for Support Package
A container is an isolated unit of software that contains everything required to run a specific
application. You can use a container as a scalable and reproducible way to deploy and test your
process.

You can follow these steps to create a Docker image that includes MATLAB, other MathWorks
products, and the CI/CD Automation for Simulink Check support package. The example Dockerfile
installs the support package and other products by using the MATLAB Package Manager (MPM).
Since certain MATLAB code requires a display to run successfully, the example Dockerfile uses Xvfb
to set up a virtual display for the container.

The MATLAB Docker image is a Linux executable, but can run on any host operating system that
Docker supports. For general information about MATLAB container images, see https://github.com/
mathworks-ref-arch/matlab-dockerfile.

1 Install Docker on your machine. For information, see https://docs.docker.com/get-docker/.
2 To access the example Dockerfile for Process Advisor, open MATLAB and enter:

open(fullfile(matlabshared.supportpkg.getSupportPackageRoot,...
"toolbox","padv","samples","Dockerfile"))

3 Save a copy of the file, Dockerfile (no file extension), in a directory that your Docker daemon
can access.

4 Build a Docker image by using the docker build command. You can use the build-time
variables to specify the MATLAB release, MathWorks products, installation location, network
license, and name for your container image. For example:

docker build --build-arg MATLAB_RELEASE=2023b
--build-arg PRODUCTS="MATLAB Simulink Simulink_Check CI/CD_Automation_for_Simulink_Check"
--build-arg MATLAB_INSTALL_LOCATION="/opt/matlab/R2023b"
--build-arg LICENSE_SERVER=port@hostname
-t my_matlab_image_name .

This example code only installs the products required by the support package. If you want to be
able to run all of the built-in tasks, see the example Dockerfile for a list of the other products to
add to the PRODUCTS list.

Use the build-arg LICENSE_SERVER to specify the port and hostname for your network license
manager.

Alternatively, you can place your network.lic file in the same folder as the example Dockerfile,
uncomment the line COPY network.lic ${MATLAB_INSTALL_LOCATION}/licenses in the

3 Integrate Process into CI

3-30

https://github.com/mathworks-ref-arch/matlab-dockerfile
https://github.com/mathworks-ref-arch/matlab-dockerfile
https://docs.docker.com/get-docker/

example Dockerfile, and run the docker build command without the LICENSE_SERVER build-
arg.

docker build --build-arg MATLAB_RELEASE=2023b
--build-arg PRODUCTS="MATLAB Simulink Simulink_Check CI/CD_Automation_for_Simulink_Check"
--build-arg MATLAB_INSTALL_LOCATION="/opt/matlab/R2023b"
-t my_matlab_image_name .

For more information, see https://docs.docker.com/reference/cli/docker/image/build/ and https://
github.com/mathworks-ref-arch/matlab-dockerfile.

Note The example Dockerfile assumes that you are using the network license manager to license
and run MATLAB. If you run MATLAB using a different licensing approach, contact MathWorks
(continuous-integration@mathworks.com) for help.

5 Create and run a container from the generated image by using the docker run command.

docker run --init --rm my_matlab_image_name -batch "ver"

For information, see https://docs.docker.com/reference/cli/docker/container/run/.

See Also
runprocess

Related Examples
• “Approaches to Running Processes in CI” on page 3-2
• “How Pipeline Generation Works” on page 3-21

 Tips for Setting Up CI Agents

3-31

https://docs.docker.com/reference/cli/docker/image/build/
https://github.com/mathworks-ref-arch/matlab-dockerfile
https://github.com/mathworks-ref-arch/matlab-dockerfile
https://docs.docker.com/reference/cli/docker/container/run/

Best Practices for Effective Builds
With the CI/CD Automation for Simulink Check support package, you can define a development and
verification process for your team by using a process model. When you deploy your process model to
your team, consider the following best practices for scheduling builds and caching artifacts.

Use Incremental Builds for Regular Submissions
For builds that you perform on a daily or more frequent basis, use incremental builds. Incremental
builds are faster and more efficient, but incremental builds skip tasks that the build system considers
up to date.

By default, the function runprocess performs an incremental build:

runprocess()

If you use a pull request workflow, incremental builds are helpful for efficiently prequalifying changes
before merging with the main repository.

Run Full Builds for Qualifying Software
Outside of the normal build schedule, you should run a full (non-incremental) build at least one time
per week and anytime you are qualifying software for a release. When you run a full build, the build
system force runs each of the tasks in the pipeline. The full build makes sure that each task in the
pipeline executes and that the output artifacts reflect the latest changes.

To run a full build, use the function runprocess with the argument Force specified as True:

runprocess(Force=true)

The Force argument forces tasks in the pipeline to execute, even if the tasks already have up to date
results.

For more information, see “Specify Settings for Process Advisor and Build System” on page 1-16 and
runprocess.

Cache Models and Other Artifacts Used During Build
If you select the setting Enable model caching, the build system can cache your models and several
other artifacts. The cache allows the build system to avoid reloading the same artifacts multiple times
within a build.

The artifacts that the build system can cache include:

• Simulink models
• Simulink libraries, subsystem references, and data dictionaries
• Test files, results, and harnesses (internally saved and externally saved) from Simulink Test
• Requirements files and requirement sets from Requirements Toolbox™
• System Composer architecture models

You can control the size of the cache by using the padv.ProjectSettings properties
MaxNumModelsInCache and MaxNumTestResultsInCache. The built-in tasks use the utility

3 Integrate Process into CI

3-32

https://www.mathworks.com/matlabcentral/fileexchange/115220-ci-cd-automation-for-simulink-check

function padv.util.closeModelsLoadedByTask to close models loaded by the task. For more
information, see padv.ProjectSettings and padv.util.closeModelsLoadedByTask.

If you have custom tasks, you can improve the efficiency of model loading in your builds by closing
the models loaded by a task by using the function padv.util.closeModelsLoadedByTask inside
your custom tasks.

For example:

classdef MyCustomTask < padv.Task
 methods
 function obj = MyCustomTask(options)
 arguments
 % unique identifier for task
 options.Name = "MyCustomTask";
 % artifacts the task iterates over
 options.IterationQuery = "padv.builtin.query.FindModels";
 % input artifacts for the task
 options.InputQueries = "padv.builtin.query.GetIterationArtifact";
 % where the task outputs artifacts
 options.OutputDirectory = fullfile(...
 '$DEFAULTOUTPUTDIR$','my_custom_task_results');
 end
 % Calling constructor of superclass padv.Task
 obj@padv.Task(options.Name,...
 IterationQuery=options.IterationQuery,...
 InputQueries=options.InputQueries);
 obj.OutputDirectory = options.OutputDirectory;
 end
 function taskResult = run(obj,input)
 % Before the task loads models, save a list of the models that are already loaded.
 loadedModels = get_param(Simulink.allBlockDiagrams(), 'Name');

 % identify model name
 % "input" is a cell array of input artifacts
 % First input query gets iteration artifact (a model)
 model = input{1}; % get padv.Artifact from first input query
 modelName = padv.util.getModelName(model);

 % Example task that loads model and displays information
 load_system(modelName);
 disp(modelName);
 disp('Data Dictionaries:')
 disp(Simulink.data.dictionary.getOpenDictionaryPaths)

 % specify results from task using padv.TaskResult
 taskResult = padv.TaskResult;
 taskResult.Status = padv.TaskStatus.Pass;
 % taskResult.Status = padv.TaskStatus.Fail;
 % taskResult.Status = padv.TaskStatus.Error;

 % Close models that were loaded by this task.
 padv.util.closeModelsLoadedByTask(...
 PreviouslyLoadedModels=loadedModels)
 end
 end
end

 Best Practices for Effective Builds

3-33

See Also
padv.ProjectSettings | padv.UserSettings | padv.util.closeModelsLoadedByTask |
runprocess

Related Examples
• “Best Practices for Process Model Authoring” on page 2-56
• “Manage Multiple Build and Verification Workflows Using Processes” on page 2-49
• “Specify Settings for Process Advisor and Build System” on page 1-16

3 Integrate Process into CI

3-34

Version History

• “September 2024” on page 4-2
• “July 2024” on page 4-5
• “June 2024” on page 4-7
• “May 2024” on page 4-10
• “April 2024” on page 4-13
• “March 2024” on page 4-14
• “February 2024” on page 4-20
• “December 2023” on page 4-23
• “November 2023” on page 4-25
• “October 2023” on page 4-27
• “September 2023” on page 4-29
• “August 2023” on page 4-31
• “July 2023” on page 4-32
• “June 2023” on page 4-33
• “April 2023” on page 4-36
• “March 2023” on page 4-39
• “February 2023” on page 4-40
• “December 2022” on page 4-41
• “November 2022” on page 4-42
• “October 2022” on page 4-43
• “September 2022” on page 4-44
• “August 2022” on page 4-45

4

September 2024
Supported releases:

• R2024a
• R2023b
• R2023a1

Documentation
The documentation for the CI/CD Automation for Simulink Check support package is now included in
the online documentation for Simulink Check. See Continuous Integration.

Updates will be announced in the Simulink Check release notes and on the File Exchange page for
the support package. The September release is the last planned release for the User's Guide and
Reference Book PDFs that ship with the support package. To access the PDF Documentation for
Simulink Check, see PDF Documentation for Simulink Check .

Features
• You can now export a report directly from Process Advisor by using the report button in the

toolstrip.

1 The July release was the last planned release for R2022b.

4 Version History

4-2

https://www.mathworks.com/help/slcheck/continuous-integration.html
https://www.mathworks.com/help/pdf_doc/slcheck/index.html

• You can now dry run tasks directly from Process Advisor. Dry runs can help you test your process
model by validating task inputs and generating representative task outputs without actually
running the tasks.

In Process Advisor, you can:

• Dry run each task in the process by clicking Run All > Dry Run All in the toolstrip.
• Dry run a specific task by pointing to the task and clicking ... > Dry Run Task

For more information, see “Dry Run Tasks to Test Process Model” on page 2-66.

• You can now control which processes are in your process model. Previously, the process model
automatically always added a default CIPipeline process to your process model and you could
not rename or remove that process. Now, if you add a process to your process model, the process
model no longer automatically creates the CIPipeline process. For more information, see
“Manage Multiple Build and Verification Workflows Using Processes” on page 2-49.

• You can use the MATLAB Unit Test framework to execute your test cases by specifying the new
task property UseMATLABUnitTest for the built-in tasks RunTestsPerModel and
RunTestsPerTestCase.

If you use the pipeline generator, padv.pipeline.generatePipeline, and your pipeline
generator options specify the GenerateJUnitForProcess property as true (1), the task uses
the MATLAB unit test XML plugin to help you produce CI-compatible, JUnit-style XML report
artifacts for your pipeline.

• The built-in tasks MergeTestResults, RunTestsPerModel, and RunTestsPerTestCase now
generate more detailed JUnit-style XML reports so that you can view additional task result
information in CI.

• You can choose whether the built-in task DetectDesignErrors generates a report by specifying
the new task property GenerateReport as true (1) or false (0). For more information, see
padv.builtin.task.DetectDesignErrors.

 September 2024

4-3

Compatibility Considerations
• For the built-in tasks, the legacy options structures RunOptions, ReportOptions,

CoverageReportOptions, TestReportOptions, and ResultSavingOptions have been
removed. The legacy options structures were replaced by the built-in task properties in the April
2023 release. To reconfigure a built-in task, you must use the current task properties.

For example:

Functionality Use This Instead
maTask.RunOptions.ReportPath maTask.ReportPath

• Starting in R2024b, the built-in queries FindRequirements and FindRequirementsForModel
will return artifacts of type "mwreq_file". If you have queries that use the artifact types
"sl_req" or "sl_req_file", you need to update your code.

• The following padv.Task properties are now hidden:

• OutputQueries
• IncludeMatlabWarningsInResults
• Products
• AllLicenseRequired
• ConfigurationFileExtensions
• EditConfigurationAction

4 Version History

4-4

July 2024
Supported releases:

• R2024b
• R2024a
• R2023b
• R2023a
• R2022b Update 1 (and later updates)2

Features
• You can now dry-run tasks to quickly validate your task inputs and generate representative task

outputs without actually running the task action. To perform a dry-run, you can use the DryRun
argument of the runprocess function. For example:

runprocess(DryRun = true)

To automatically check out the licenses associated with the tasks, you can specify:

runprocess(DryRun = true, DryRunLicenseCheckout = true)

Dry-runs can be helpful for quickly testing out your CI pipeline and making sure that your
required products and licenses are available, locally and on your CI agents. The built-in tasks now
have a dryRun method that generates representative task outputs for each task. You can define
your own custom dry-run functionality by overriding the dryRun method for class-based tasks or
specifying the task property DryRunAction for function-based tasks.

Compatibility Considerations
Previously, in your pipeline generator options object, you specified runprocess arguments by using
these properties:

• ForceRunAllTasks
• ExitInBatchMode
• RerunFailedTasks
• RerunErroredTasks
• GenerateJUnitForProcess

These properties will be removed from the pipeline generator options objects in a future release. Use
the new property RunprocessCommandOptions instead.

Object Previous Properties New Property
padv.pipeline.GitHubOptions • ForceRunAllTasks

• ExitInBatchMode
• RerunFailedTasks
• RerunErroredTasks

RunprocessCommandOptions
padv.pipeline.GitLabOptions

2 The July release is the last planned release for R2022b.

 July 2024

4-5

Object Previous Properties New Property
padv.pipeline.JenkinsOptions • GenerateJUnitForProcess

Instead of specifying runprocess arguments directly in your pipeline generator options object:

1 Create a padv.pipeline.RunProcessOptions object.
2 Set the properties of the object.
3 Use the object to specify the property RunprocessCommandOptions for your pipeline generator

options object.

This example shows how to create a GitHub pipeline generator options object that specifies certain
runprocess arguments using the recommended functionality.

Functionality Use This Instead
padv.pipeline.GitHubOptions(...
ForceRunAllTasks = false,...
ExitInBatchMode = false,...
RerunFailedTasks = false,...
RerunErroredTasks = false,...
GenerateJUnitForProcess = false);

op = padv.pipeline.RunProcessOptions;
op.Force = false;
op.ExitInBatchMode = false;
op.RerunFailedTasks = false;
op.RerunErroredTasks = false;
op.GenerateJUnitForProcess = false;

padv.pipeline.GitHubOptions(...
RunprocessCommandOptions = op)

4 Version History

4-6

June 2024
Supported releases:

• R2024a
• R2023b
• R2023a
• R2022b Update 1 (and later updates)

Features
• You can collect model design and testing metrics for the units and components in your project by

using the new built-in task padv.builtin.task.CollectMetrics. These metrics correspond
to the metrics in the Model Maintainability Dashboard and Model Testing Dashboard.

You can add tasks for collecting different metrics by using addTask and configuring the tasks
inside your process model. By default, the CollectMetrics collects metrics for the Model
Maintainability Dashboard, but you can reconfigure the task to collect model testing and code
testing metrics by changing the iteration query and specifying the Dashboard property.

 %% Collect Model Maintainability Metrics
 mmMetricTask = pm.addTask(padv.builtin.task.CollectMetrics());

 %% Collect Model Testing Metrics
 mtMetricTask = pm.addTask(padv.builtin.task.CollectMetrics(...
 Name="ModelTestingMetrics",...
 IterationQuery=padv.builtin.query.FindUnits));
 mtMetricTask.Title = "Collect Model Testing Metrics";
 mtMetricTask.Dashboard = "ModelUnitTesting";
 mtMetricTask.ReportName = "$ITERATIONARTIFACT$_ModelTesting";

 %% Collect SIL Code Testing Metrics
 stMetricTask = pm.addTask(padv.builtin.task.CollectMetrics(...
 Name="SILTestingMetrics",...
 IterationQuery=padv.builtin.query.FindUnits));
 stMetricTask.Title = "Collect SIL Code Testing Metrics";
 stMetricTask.Dashboard = "ModelUnitSILTesting";
 stMetricTask.ReportName = "$ITERATIONARTIFACT$_SILTesting";

 %% Collect PIL Code Testing Metrics
 ptMetricTask = pm.addTask(padv.builtin.task.CollectMetrics(...
 Name="PILTestingMetrics",...
 IterationQuery=padv.builtin.query.FindUnits));
 ptMetricTask.Title = "Collect PIL Code Testing Metrics";
 ptMetricTask.Dashboard = "ModelUnitPILTesting";
 ptMetricTask.ReportName = "$ITERATIONARTIFACT$_PILTesting";

When you point to one of the tasks in Process Advisor, you have the option to launch the
associated dashboard (Model Design Dashboard or Model Testing Dashboard).

For more information, see padv.builtin.task.CollectMetrics,
padv.builtin.query.FindDesignModels, and padv.builtin.query.FindUnits.

 June 2024

4-7

• To find models that are associated with test cases that use a specific test case tag, use the new
Tags argument for the built-in query padv.builtin.query.FindModelsWithTestCases.

• Get the absolute path to an artifact by using the new object function getAbsolutePath for
padv.util.ArtifactAddress.

• When you create a new process model with the createprocess function, you can now
automatically set up the default process model template to groups model verification tasks and
code verification tasks into separate subprocesses by specifying the Subprocess as true:

createprocess(Subprocess = true)

When you open Process Advisor, the Tasks column shows the tasks grouped into Model
Verification and Code Verification.

Additionally, if you want to create an instance of the Process Advisor example project that uses
Model Verification and Code Verification subprocesses, you can use the Subprocess
argument. For example:

processAdvisorExampleStart(Subprocess = true)

• You now have the option to open multiple tools from the options menu (...) of a task. To associate
multiple tools with a task, specify the task property LaunchToolAction as a cell array of
function handles and LaunchToolText as a string array. For each tool action that you specify in
LaunchToolAction, you must have corresponding text specified in LaunchToolText. For
example, to create a custom task that has options for opening the Dependency Analyzer app and
the Clone Detector app:

 t = addTask(pm,'MyCustomTask',...
 Title = "My Custom Task",...
 IterationQuery = padv.builtin.query.FindModels);
 t.LaunchToolAction={@openDependencyAnalyzer,@openCloneDetector};
 t.LaunchToolText=["Open Dependency Analyzer","Open Clone Detector"];

4 Version History

4-8

In this case, @openDependencyAnalyzer and @openCloneDetector are handles to custom
functions that open the Dependency Analyzer app and Clone Detector app, respectively.

Compatibility Considerations
• For padv.Artifact, these properties have been removed:

• Address
• UUID
• StorageAddress

To specify or get an artifact address, update your code to use padv.util.ArtifactAddress
and its properties instead. There is no direct replacement for the properties UUID and
StorageAddress.

• For the runprocess function, the EnableTaskLogging argument is now true by default.
Previously, the argument was logical.empty by default. Note that if the project setting
SuppressOutputWhenInteractive is true and MATLAB is not running in batch mode, task
logging is automatically disabled.

 June 2024

4-9

May 2024
Supported releases:

• R2024a
• R2023b
• R2023a
• R2022b Update 1 (and later updates)

Features
Manage Different Workflows Using Processes

• Inside your process model, you can now define multiple processes for the different build and
verification workflows, environments, and other situations that your team needs. For example, you
can have one process for your CI pipeline and a separate process for smoke testing with fail-fast
tasks. In Process Advisor, you can select which process you want to use from the Processes
gallery in the toolstrip. APIs like the runprocess function also allow you to specify which
Process to run.

 runprocess(Process = "Fail-Fast")
 processadvisor(modelName,"Fail-Fast")

If you define multiple processes, use the padv.Process methods to add tasks and subprocesses
and to specify the relationships within that process. For more information, see “Manage Multiple
Build and Verification Workflows Using Processes” on page 2-49.

Performance Optimizations

• Process Advisor now runs performance checks on your process model and generates a warning if
tasks in the process model use multiple instances of the same iteration query. You can improve
Process Advisor load times by sharing query instances across your process model. For example, if
multiple tasks in the process model use the same iteration query, you can update your code to
share a single query object instance across these tasks.

4 Version History

4-10

Before

taskA = pm.addTask("taskA",...
 IterationQuery = padv.builtin.query.FindModels);
taskB = pm.addTask("taskB",...
 IterationQuery = padv.builtin.query.FindModels);

After
sharedModelsQuery = padv.builtin.query.FindModels(...
 Name="SharedModelsQuery");
taskA = pm.addTask("taskA",...
 IterationQuery = sharedModelsQuery);
taskB = pm.addTask("taskB",...
 IterationQuery = sharedModelsQuery);

For more information on how to improve performance, see “Best Practices for Process Model
Authoring” on page 2-56. If you want to suppress performance warnings, specify the
padv.ProcessModel property EnablePerformanceChecks as false inside your process
model.

• Additionally, a query can use the results of another query by specifying that query as a parent. The
query can use the parent query to find an initial set of iteration artifacts. You can use the Parent
name-value argument for these built-in queries:

• padv.builtin.query.FindCodeForModel
• padv.builtin.query.FindMAJustificationFileForModel
• padv.builtin.query.FindModelsWithTestCases
• padv.builtin.query.FindRequirementsForModel
• padv.builtin.query.FindTestCasesForModel

Warnings for Best Practices

• By default, the build system now generates a warning for untracked I/O files. If you make a
change to an untracked input or output file, Process Advisor and the build system do not mark the
task as outdated. Make sure that task inputs or outputs that appear as Untracked do not need
to be tracked to maintain the task status and result information that you need for your project.

In Process Advisor, the I/O column shows a warning icon for tasks that have untracked inputs
or outputs. To change this behavior, you can specify the project setting Untracked dependency
behavior as either:

• "Allow" — Do not generate warnings or errors for untracked I/O files.
• "Warn" — Generate a warning if a task has untracked I/O files. In Process Advisor, the I/O

column shows a warning icon .
• "Error" — Generate an error if a task has untracked I/O files.

For more information, see “Specify Settings for Process Advisor and Build System” on page 1-16.

• You can instruct the build system to detect when there are multiple process model files on the
project path. For more information, see the property DetectMultipleProcessModels for

 May 2024

4-11

padv.ProjectSettings. To avoid unexpected behavior, make sure only one processmodel file
is on the project path.

Built-In Query Enhancements

• Find artifacts where the path matches a regular expression pattern by using the new
IncludePathRegex and ExcludePathRegex name-value arguments for these built-in queries:

• padv.builtin.query.FindArtifacts
• padv.builtin.query.FindExternalCodeCache
• padv.builtin.query.FindFilesWithLabel
• padv.builtin.query.FindModels
• padv.builtin.query.FindModelsWithLabel
• padv.builtin.query.FindRequirements

For example, to find artifacts that start with DD_ and have an .sldd file extension:

q = padv.builtin.query.FindArtifacts(...
IncludePathRegex = "DD_.*\.sldd");
run(q)

• The built-in query padv.builtin.query.FindArtifacts and its subclasses now support
Windows®-style path separators (\) in the paths for IncludePath and ExcludePath. Previously,
the query expected UNIX®-style separators (/).

4 Version History

4-12

April 2024
Supported releases:

• R2024a

Features:

• The support package now supports R2024a.

 April 2024

4-13

March 2024
Supported releases:

• R2023b
• R2023a
• R2022b Update 1 (and later updates)

The March 2024 update also makes all features from the February 2024 update available to R2022b,
R2023a, and R2023b. See "February 2024" below.

Features
Parallel Code Generation, Integration, and Automation

• Starting in R2023b Update 5, the pipeline generator supports a round-trip, parallel CI workflow
that automatically merges the task statuses and project analysis from across the parallel
branches. Previously, the parallel pipeline architecture IndependentModelPipelines
generated separate artifact database files, artifacts.dmr, for each parallel branch. The pipeline
generator uses utility functions to save and merge the artifact database files from parallel
branches into a single artifacts.dmr file. When you download your CI artifacts onto your
machine, you can use the merged artifacts.dmr file in your project to see up-to-date task
statuses locally in Process Advisor. For information and considerations for parallel code
generation, see “Parallel Pipeline Architectures” on page 3-24.

• If you use Git submodules to organize your projects, the pipeline generator,
padv.pipeline.generatePipeline, now supports automatic fetching of Git submodules for
GitHub and GitLab. For more information, see either “Integrate Process into GitHub” on page 3-5
or “Integrate Process into GitLab” on page 3-8.

• Previously, if you wanted to create a Docker image that installed the support package, you needed
to download and use the offline installer files. You can now build a Docker image that directly
installs the support package and other products using the MATLAB Package Manager (MPM). For
information and the updated example Dockerfile, see “Create Docker Container for Support
Package” on page 3-30.

Process Advisor Enhancements

• Previously, you used padv.Preferences to manage both project and run-time settings. Now, you
can specify these settings by using the new classes padv.ProjectSettings and
padv.UserSettings, respectively. These classes allow you to programmatically control the
settings for incremental builds, build system logging, and other behaviors.

Additionally, you no longer need to create a project startup script to persist run-time settings. The
padv.UserSettings class automatically manages and persists those settings across MATLAB
sessions on your machine.

The main class properties correspond to settings in the Process Advisor Settings dialog box.

4 Version History

4-14

The class padv.Preferences will be removed in a future release. For project settings, use
padv.ProjectSettings instead. For run-time settings, use padv.UserSettings instead.

• To view the source code or edit the class definition for a task, you can now point to the task, click
the ellipsis (...), and then click Edit Task.

For information on how to reconfigure the built-in tasks or create custom tasks, see “Reconfigure
Task Behavior” on page 2-17 and “Create Custom Tasks” on page 2-28.

• By default, Process Advisor no longer shows file extensions for task iteration artifacts shown in the
Tasks column. Previously, you needed to create a custom query if you wanted to remove the file
extensions from artifact names in Process Advisor.

 March 2024

4-15

By default, queries now strip file extensions from the Alias property of each task iteration
artifact. To show file extensions for all artifacts in the Tasks column, select the project setting
Show file extensions. To keep file extensions in the results for a specific query, specify the query
property ShowFileExtension as true.

Build System Enhancements

• You can now use files outside your project as inputs to a task. For example, if you have a shared
Model Advisor configuration file, SHARED_MA_CONFIG.json, that is outside your project, you can
add the file as an input to the Check Modeling Standards task.

 maTask = pm.addTask(padv.builtin.task.RunModelStandards());
 maTask.addInputQueries(padv.builtin.query.FindFileWithAddress(...
 Type='ma_config_file', Path=which('SHARED_MA_CONFIG.json')));

In the Process Advisor I/O column, the file appears as Untracked because you cannot track
changes to files outside the project. If you make a change to an untracked file, the build system
does not mark the task as outdated.

• If you do not want the build system to mark a task as outdated when you make changes to task
outputs, you can now turn off change tracking for those task outputs. In your process model,
specify the task property TrackOutputs as false.

 maTask = pm.addTask(padv.builtin.task.RunModelStandards());
 maTask.TrackOutputs = false;

4 Version History

4-16

In the Process Advisor I/O column, the outputs appear as Untracked. If you make a change to an
untracked file, the build system does not mark the task as outdated.

• The build system can now cache requirement sets. For information on caching, see “Cache Models
and Other Artifacts Used During Build” on page 3-32.

• You can suppress command-line output from tasks by specifying the new runprocess argument
EnableTaskLogging as false. By default, the runprocess function only suppresses command-
line output from tasks if the project setting SuppressOutputWhenInteractive is true and
MATLAB is not running in batch mode.

• If you want to override the project setting SuppressOutputWhenInteractive when you use the
function runprocess during interactive MATLAB sessions, you can use the runprocess
argument SuppressOutputWhenInteractive. For information, see runprocess.

Built-In Tasks and Queries

• The built-in task padv.builtin.task.AnalyzeModelCode has been enhanced to:

• Prevent the task from dirtying the model when you specify a Polyspace configuration options in
the process model.

• Check if MATLAB is already connected to a Polyspace server before calling
polyspaceJobsManager.

• Allow you to override the Polyspace configuration options with two new task properties:

• Batch — Option to run analysis on server (-batch)
• Scheduler — Specify cluster or job scheduler (-scheduler)

For information, see padv.builtin.task.AnalyzeModelCode.

 March 2024

4-17

• You can use the built-in query padv.builtin.query.FindCodeForModel to find the generated
code files and buildInfo.mat for a model. If you have your code generation tasks and code
analysis tasks in different subprocesses, this query can be helpful for passing your generated code
other subprocesses. For more information and an example, see the documentation for the built-in
query padv.builtin.query.FindCodeForModel.

• The following built-in tasks override the model configuration parameter LaunchReport to
suppress code generation reports from appearing during task execution:

• padv.builtin.task.GenerateCode
• padv.builtin.task.RunTestsPerModel
• padv.builtin.task.RunTestsPerTestCase

Utility Functions

• If you want to manually refresh the process model data, you can use the new utility function
padv.util.refreshProcessModel. For information, see
padv.util.refreshProcessModel.

• If you need to get a list of the project references for the current project for a custom task or query,
consider using the new utility function padv.util.getProjectReferences. This function gets
a list of the project references for the current project and caches the list. For information, see
padv.util.getProjectReferences.

Compatibility Considerations
• The class padv.Preferences will be removed in a future release. Update your code to replace

instances of padv.Preferences with either padv.UserSettings.get() or
padv.ProjectSettings.get(), depending on which property you need to access.

padv.Preferences Property Update
DetectDuplicateOutputs Replace instances of padv.Preferences

with padv.UserSettings.get().GarbageCollectTaskOutputs
ShowDetailedErrorMessages
TrackProcessModel
FilteredDigitalThreadMessages Replace instances of padv.Preferences

with padv.ProjectSettings.get().IncrementalBuild
EnableModelCaching
MaxNumModelsInCache
MaxNumTestResultsInCache
SuppressOutputWhenInteractive

For example:

4 Version History

4-18

Functionality Use This Instead
% changing run-time setting
p1 = padv.Preferences;
p1.DetectDuplicateOutputs = false;

p1 = padv.UserSettings.get();
p1.DetectDuplicateOutputs = false;

% changing project setting
p1 = padv.Preferences;
p1.IncrementalBuild = false;

p1 = padv.ProjectSettings.get();
p1.IncrementalBuild = false;

• By default, Process Advisor no longer shows file extensions for artifacts shown in the Tasks
column. To show file extensions for all artifacts in the Tasks column, select the project setting
Show file extension. To keep file extensions in the results for a specific query, specify the query
property ShowFileExtension as true.

 March 2024

4-19

February 2024
February 2024 was released for R2022a Update 4 (and later updates).3

Features
Model and Simulation Management

• Starting in R2023a, you can use your Model Advisor justifications when checking modeling
standards. Provide your justification files as inputs to the task by using the new built-in query
padv.builtin.query.FindMAJustificationFileForModel to find the justification files in a
specified folder. For example:

 maTask = addTask(pm,padv.builtin.task.RunModelStandards);
 maTask.addInputQueries(...
 padv.builtin.query.FindMAJustificationFileForModel(...
 JustificationFolder=fullfile("Justifications","ModelAdvisor")));

See padv.builtin.query.FindMAJustificationFileForModel.
• Starting in R2023a, you can run tests in different simulation modes by specifying the

SimulationMode property for the built-in tasks padv.builtin.task.RunTestsPerModel and
padv.builtin.task.RunTestsPerTestCase. The property allows you to override the test
simulation mode without having to change the test definition.

• The property DefaultOutputDirectory for padv.ProcessModel now supports paths relative
to the project root.

Process Advisor Enhancements

• You can now specify padv.Preferences by using the new Settings user interface in the Process
Advisor.

• You can now customize how artifact names appear in Process Advisor by using the new Alias
property of padv.Artifact objects.

3 The February release is the last planned release for R2022a.

4 Version History

4-20

• You can suppress command-line output from Process Advisor during interactive MATLAB sessions
by selecting Suppress outputs to command window in the Settings dialog box. For information,
see “Specify Settings for Process Advisor and Build System” on page 1-16.

Build System Enhancements

• The build system can now run tasks from any working directory. Previously, you needed to be
within the project root folder to run tasks.

• Previously during a build, the build system only cached models. Now, when you select the Enable
model caching setting, the build system can cache models and several other artifacts, including
test results, requirements files, and System Composer architecture models. You can control the
size of the cache by using the new padv.Preferences preferences MaxNumModelsInCache and
MaxNumTestResultsInCache. The built-in tasks now use the new utility function
padv.util.closeModelsLoadedByTask to close models loaded by the task. For information,
see “Cache Models and Other Artifacts Used During Build” on page 3-32.

Utility Function for Custom Tasks and Queries

If you need to get the current project instance for a custom task or query, consider using the new
utility function padv.util.getCurrentProject. This function can be faster than the
currentProject function because it creates a persistent variable for the current project instance.
For information, see padv.util.getCurrentProject.

Compatibility Considerations
• Supported Releases

• The February release is the last planned release for R2022a.

In March 2024, the support package will support:

• R2023b
• R2023a
• R2022b Update 1 (and later updates)

• Process Advisor

• In Process Advisor, the Incremental Build check box is now in the Settings dialog box. In the
toolstrip, click Settings to access the Incremental build setting. For information, see
"Specify Settings for Builds".

 February 2024

4-21

• Build System

• The Enable model caching setting (EnableModelCaching property in padv.Preferences)
is now off by default.

• Built-In Tasks

• The built-in task padv.builtin.task.RunModelStandards no longer supports generating
reports as PDF files. If you specified the task property ReportFormat as "pdf", you must
update your code to specify the report format as "html" or "docx" instead.

• For the built-in task padv.builtin.task.GenerateCode, the property
IncludeModelReferenceSimulationTargets has been removed and is no longer
supported. Update your code to remove references to
IncludeModelReferenceSimulationTargets.

• Artifact Handling

• The object function getAlias has been removed from padv.Artifact. To get the human-
readable name for an artifact, use the Alias property instead.

• The methods padv.Task.load_model and padv.Task.close_model have been removed
and the padv.Task.load_model functionality is no longer supported. If you used
padv.Task.load_model and padv.Task.close_model inside your custom tasks, update
your code to use a function like load_system to load your model and use the new utility
function padv.util.closeModelsLoadedByTask to close the models loaded by a task. For
information, see padv.util.closeModelsLoadedByTask.

4 Version History

4-22

December 2023
Supports:

• R2023b
• R2023a
• R2022b Update 1 (and later updates)
• R2022a Update 4 (and later updates)

Features:

• Starting in R2023b Update 5, you can merge artifacts.dmr files from different branches or CI
jobs to make sure task statuses are up-to-date with the latest project analysis.

• Save a copy of an artifact database file using the function
padv.util.saveArtifactDatabase:

padv.util.saveArtifactDatabase(fullfile("derived","base.dmr"))

• Merge artifact database files using the function padv.util.mergeArtifactDatabases:

padv.util.mergeArtifactDatabases(...
Base = fullfile("derived","base.dmr"),...
Branches = [fullfile("derived","featureA.dmr"), fullfile("derived","featureB.dmr")],...
Merged = fullfile("derived","artifacts.dmr"))

The merged artifacts.dmr file contains the updates from the specified branches.
• You can improve the efficiency of model loading in your builds by using the methods

padv.Task.load_model and padv.Task.close_model inside your custom tasks. These
methods allow the build system to cache a model, instead of reloading the same model multiple
times within a build. For information, see "Best Practices for Effective Builds".

• The built-in task padv.builtin.task.MergeTestResults can generate code coverage reports
for tests that you execute in software-in-the-loop (SIL) mode and processor-in-the-loop (PIL) mode.
The report names are specified by the new task properties CovReportNameSIL and
CovReportNamePIL. For more information, see the documentation for the built-in task
padv.builtin.task.MergeTestResults.

• Programmatically get task results from specific tasks, subprocesses, and artifacts by using the
name-value arguments for the function getProcessTaskResults. For example, to get the task
results from running the task padv.builtin.task.RunModelStandards on the artifact
myModel.slx:

[IDsWithResults,results,outdated] = getProcessTaskResults(...
Tasks = "padv.builtin.task.RunModelStandards",...
FilterArtifact = fullfile("models","myModel.slx"))

For information, see getProcessTaskResults.

• You can get the outputs from a specific task by using the Task argument for the built-in query
padv.builtin.query.GetOutputsOfDependentTask. You can also specify a unique query
name using the Name argument. For example:

 December 2023

4-23

padv.builtin.query.GetOutputsOfDependentTask(...
Task="padv.builtin.task.GenerateCode",...
Name = "CustomNameForQuery")

For information, see padv.builtin.query.GetOutputsOfDependentTask.

• When you use the pipeline generator, you no longer need to specify the OutputDirectory
property for custom tasks. If your custom task generates outputs without a specified output
directory, the build system automatically stores the task outputs in the
DefaultOutputDirectory specified in the process model.

• If you want to filter out certain types of issues shown in the Project Analysis Issues pane, you
can use the FilteredDigitalThreadMessages in your padv.Preferences. For information,
see padv.Preferences.

Compatibility Considerations
• Built-in tasks now use the methods padv.Task.load_model and padv.Task.close_model to

improve the efficiency builds by caching models. If you do not want tasks to cache models, specify
the EnableModelCaching property in your padv.Preferences as false.

4 Version History

4-24

November 2023
Supports:

• R2023b
• R2023a
• R2022b Update 1 (and later updates)
• R2022a Update 4 (and later updates)

Features:

• Check for run-time errors in every operation in your code by configuring the built-in task
padv.builtin.task.AnalyzeModelCode to use Polyspace Code Prover.

When you specify the task property VerificationMode as "CodeProver", the task uses
Polyspace Code Prover to prove code quality.

You can use both Bug Finder and Code Prover in your software development workflow. To include
both a Bug Finder task and a Code Prover task in your process model, add two separate instances
of the built-in task padv.builtin.task.AnalyzeModelCode to your process. For example:

%% Check Coding Standards with Polyspace Bug Finder
psbfTask = pm.addTask(padv.builtin.task.AnalyzeModelCode());
% Report Options
psbfTask.ResultDir = fullfile(defaultResultPath,'bug_finder');
psbfTask.ReportPath = fullfile(defaultResultPath,'bug_finder');

%% Prove Code Quality with Polyspace Code Prover
pscpTask = pm.addTask(padv.builtin.task.AnalyzeModelCode(Name="ProveCodeQuality"));
pscpTask.Title = "Prove Code Quality";
pscpTask.VerificationMode = "CodeProver";
% Report Options
pscpTask.ResultDir = string(fullfile(defaultResultPath,'code_prover'));
pscpTask.Reports = ["Developer", "CallHierarchy", "VariableAccess"];
pscpTask.ReportPath = string(fullfile(defaultResultPath,'code_prover'));
pscpTask.ReportNames = [...
 "$ITERATIONARTIFACT$_Developer", ...
 "$ITERATIONARTIFACT$_CallHierarchy", ...
 "$ITERATIONARTIFACT$_VariableAccess"];

For more information, see the documentation for the built-in task
padv.builtin.task.AnalyzeModelCode.

• Find multiple files with the built-in query padv.builtin.query.FindFileWithAddress by
specifying the artifact type and file path name-value arguments as vectors of the same length.

padv.builtin.query.FindFileWithAddress(...
Type=[artifactType1, artifactType2],...
Path=[filePath1, filePath2])

For more information, see the documentation for the built-in query
padv.builtin.query.FindFileWithAddress.

(continues on next page)

 November 2023

4-25

• By default, the build system now generates an error if multiple tasks attempt to write to the same
output file. If you want to turn this setting off, you can specify DetectDuplicateOutputs as
false in padv.Preferences.

• The built-in query padv.builtin.query.FindTestCasesForModel can now also find test
cases associated with subsystem references. A subsystem reference allows you to save the
contents of a subsystem in a separate file and reference it using a Subsystem Reference block.
Previously, the query found only the test cases directly associated with the Simulink or System
Composer model itself.

Fixes:

• A syntax issue has been fixed in the example pipeline configuration file for GitLab. You can open
the updated example by entering processAdvisorGitLabExampleStart in the MATLAB
Command Window.

Compatibility Considerations
• In a future release, the built-in query padv.builtin.query.FindFileWithAddress will no

longer accept positional arguments. Update your code to use name-value arguments instead.

Functionality Use This Instead
padv.builtin.query.FindFileWithAddress(...
"artifactType",...
"filePath")

padv.builtin.query.FindFileWithAddress(...
Type = "artifactType",...
Path = "filePath")

4 Version History

4-26

October 2023
Supports:

• R2023b
• R2023a
• R2022b Update 1 (and later updates)
• R2022a Update 4 (and later updates)

Features

• You can compare models to their ancestors in Git and generate a model comparison report directly
from Process Advisor with the built-in task padv.builtin.task.GenerateModelComparison.

To add the task to your process model, use the function addTask:

mdlCompTask = addTask(pm, padv.builtin.task.GenerateModelComparison());

You can use the task properties to specify different report options, filtering options, and the name
of the Git branch used for the comparison. For example:

mdlCompTask.ReportFormat = "DOCX";
mdlCompTask.MainBranch = "branchname";

In Process Advisor, when you point to the task and click ... > Compare to Ancestor, you can
open the Model Comparison tool.

For more information, see the documentation for the built-in task
padv.builtin.task.GenerateModelComparison.

(continues on next page)

 October 2023

4-27

Note If you run MATLAB using the -nodisplay option or you use a machine that does not have a
display (like many CI runners and Docker containers), you should set up a virtual display server
before you include this task in your process model. For information, see “Set Up Virtual Display
Machines Without Displays” on page 3-29.

• By default, the built-in query padv.builtin.query.FindFileWithAddress validates that the
file exists before returning the file from the query. The name-value argument
ValidateFileExistence is now true by default.

4 Version History

4-28

September 2023
Supports:

• R2023a
• R2022b Update 1 (and later updates)
• R2022a Update 4 (and later updates)

Features

• Manually generate a pipeline configuration file for GitHub by passing a
padv.pipeline.GitHubOptions object to the function padv.pipeline.generatePipeline.
For information, see “Integrate Process into GitHub” on page 3-5.

• Group related tasks, create a hierarchy of tasks, and share parts of a process using subprocesses.
A subprocess is a self-contained sequence of tasks, inside a process or other subprocess, that can
run standalone. For information, see "Group Tasks Using Subprocesses".

• Programmatically run tasks, subprocesses, and tasks for specific artifacts by using the updated
name-value arguments for the runprocess function:

• Tasks — Specify the names of the tasks that you want to run.

runprocess(...
Tasks = ["padv.builtin.task.GenerateSimulinkWebView",...
"padv.builtin.task.RunModelStandards"])

• Subprocesses — Specify the name of the subprocess that you want to run.

runprocess(Subprocesses = "SubprocessA")

• FilterArtifact — Specify the artifact that you want to run tasks on.

runprocess(...
FilterArtifact = fullfile("02_Models","AHRS_Voter","specification","AHRS_Voter.slx"))

You can use one or more of these name-value arguments to specify what you want to run. You can
also use these name-value arguments with the function generateProcessTasks. For more
information, see runprocess and generateProcessTasks.

(continues on next page)

 September 2023

4-29

• You can reconfigure the Check Coding Standards task
(padv.builtin.task.AnalyzeModelCode) to automatically upload Bug Finder analysis results
to Polyspace Access.

Use the new Polyspace Access properties of the task to provide your configuration options and
credentials. For example, for a process model with a Polyspace task object psTask:

% Polyspace Access configuration options
psTask.PsAccessEnable = true;
psTask.PsAccessHostName = "my-polyspace-access";
psTask.PsAccessPortNumber = "9443";
psTask.PsAccessProtocol = "https";
psTask.PsAccessCredentialsFile = "C:\Users\username\myCredentials.txt";
psTask.PsAccessParentFolder = "public/myProject";
psTask.PsAccessResultsName = "$ITERATIONARTIFACT$_CodingStandards";

For more information, see the documentation for the built-in task
padv.builtin.task.AnalyzeModelCode.

• By default, a query can find files under the project root folder, even if you did not add that file to
the project. To only return artifacts that you added to the project, you can now specify the
InProject argument for the query as true.

For example, to have the Check Modeling Standards task, maTask, only run for models that you
added to the project, specify the iteration query as padv.builtin.query.FindModels and
specify the argument InProject as true.

maTask = pm.addTask(padv.builtin.task.RunModelStandards());
maTask.IterationQuery = padv.builtin.query.FindModels(...
 InProject = true);

The InProject argument is available for the built-in queries FindArtifacts,
FindFilesWithLabel, FindModels, FindModelsWithLabel, and FindRequirements.

• When you open a test case from the Tasks column, Process Advisor automatically loads the test
case results in Test Manager.

4 Version History

4-30

August 2023
Supports:

• R2023b
• R2023a
• R2022b Update 1 (and later updates)

Features

• With the pipeline generator, you can run tasks on your models in parallel by using the pipeline
architecture, padv.pipeline.Architecture.IndependentModelPipelines. Downstream,
parallel pipelines independently run the tasks associated with each model. For more information,
see "Integrate into CI".

Fixes

• Previously, if you set the properties of a query instance in the process model, all tasks that used
that query instance were affected, unless you specified a unique name for the query instance.
Now, you no longer need to specify a unique name for the query instance to set different values for
different tasks. For example, you can have two tasks, TaskA and TaskB, that set different
properties for instances of the built-in query padv.builtin.query.FindModels.

% Task A only runs on the model "A.slx"
taskA = addTask(pm,"TaskA");
taskA.IterationQuery = padv.builtin.query.FindModels;
taskA.IterationQuery.IncludePath = "A.slx";

% Task B only runs on the model "B.slx"
taskB = addTask(pm,"TaskB");
taskB.IterationQuery = padv.builtin.query.FindModels;
taskB.IterationQuery.IncludePath = "B.slx";

If you want to share a query across multiple tasks, specify a unique name for the query and use
the addQuery function to add the query to the process model.

• The build system no longer returns a warning or exception when attempting to load results
generated by a previous version of the support package.

Compatibility Considerations
• You must specify the Name property for a query instance before you use the addQuery function in

the process model.

 August 2023

4-31

July 2023
Supports:

• R2023a
• R2022b Update 1 (and later updates)
• R2022a Update 4 (and later updates)

Fixes

• Removed unsupported call to padv.utils.isMACacheUpdated in the built-in task
padv.builtin.task.RunModelStandards (Check Modeling Standards).

Features:

• The built-in tasks padv.builtin.task.RunTestsPerModel and
padv.builtin.task.RunTestsPerTestCase support test cases that run test iterations in fast
restart.

• The built-in task padv.builtin.task.MergeTestResults has a new property
LoadSimulationSignalData. If you specify LoadSimulationSignalData as true, the task
loads simulation signal data when loading the test results.

4 Version History

4-32

June 2023
Supports:

• R2023a
• R2022b Update 1 (and later updates)
• R2022a Update 4 (and later updates)

Features:

• Artifacts

• There are new utility functions for working with artifacts. For information, enter:

help padv.util
• You can use the utility functions when working with artifacts and artifact addresses. For

example, you can use padv.util.ArtifactAddress to specify the address of a
padv.Artifact:

model = padv.Artifact("sl_model_file",...
padv.util.ArtifactAddress(...
fullfile("02_Models","AHRS_Voter","specification","AHRS_Voter.slx")));

• Build System

• You can automatically generate a build report after running tasks with runprocess:

runprocess(GenerateReport = true)

For information on how to specify a different report name and format, see "Generate Build
Report".

• Process Advisor and the build system support a P-coded process model file processmodel.p.
If you have both a P-code file and a .m file, the P-code file takes precedence over the
corresponding .m file for execution, even after modifications to the .m file.

• Built-In Tasks and Queries

• You can use the Tags argument of the built-in query
padv.builtin.query.FindTestCasesForModel to find test cases that use specific tags.

• The built-in tasks padv.builtin.task.RunTestsPerModel and
padv.builtin.task.RunTestsPerTestCase now use the MATLAB test runner,
matlab.unittest.TestRunner, to run tests and generate JUnit-style XML reports in CI.

• Pipeline Generation

• The pipeline generator now allows you to specify if and when you want to collect artifacts for
your pipeline. In padv.pipeline.GitLabOptions or padv.pipeline.JenkinsOptions,
you can specify the property EnableArtifactCollection as:

• "never", 0, or false — Never collect artifacts
• "on_success" — Only collect artifacts when the job succeeds
• "on_failure" — Only collect artifacts when the job fails
• "always", 1, or true — Always collect artifacts

(continues on next page)

 June 2023

4-33

• The pipeline generator now allows you to control whether a pipeline stops or continues
running after a stage fails. In padv.pipeline.GitLabOptions or
padv.pipeline.JenkinsOptions, you can specify the property StopOnStageFailure as
either true or false. By default, the pipeline does not stop if a stage in the pipeline fails.

• The pipeline generator automatically generates a Process Advisor build report before
collecting build artifacts. The report generates in a new job, Generate_PADV_Report. For
more information, see “How Pipeline Generation Works” on page 3-21.

Compatibility Considerations
• Artifacts

• padv.Artifact no longer returns the properties Address, UUID, Label, and
StorageAddress. padv.Artifact now returns an ArtifactAddress property instead:

a =

 Artifact with properties:

 Type: "artifact_type"
 Parent: [0×0 padv.Artifact]
 ArtifactAddress: [1×1 padv.util.ArtifactAddress]

For information, see the documentation for the utility function
padv.util.ArtifactAddress.

• Queries

• The Name property for padv.Query objects is now immutable. You cannot change the value of
the Name property after the query object is created. If you want to set a property value for a
padv.Query object, set the value by using the name-value arguments in the constructor.

• Built-In Tasks and Queries

• The CovReportPath property was removed from the built-in task
padv.builtin.task.MergeTestResults. The coverage and test reports automatically
generate into the folder location specified by ReportPath.

• The Tags property was removed from the built-in task
padv.builtin.task.RunTestsPerTestCase. Use Tags argument of query
padv.builtin.query.FindTestCasesForModel to find test cases with specific test tags
instead:

addTask(pm,padv.builtin.task.RunTestsPerTestCase,...
 IterationQuery = padv.builtin.query.FindTestCasesForModel(...
 Tags="FeatureA"));

• The Tags property will be removed from the built-in task
padv.builtin.task.RunTestsPerModel in a future release. Use the Tags argument of
query padv.builtin.query.FindTestCasesForModel instead.

• The GenerateJUnitForTask property was removed from padv.Task. padv.Task now uses
the properties CISupportOutputsForTask and CISupportOutputsByTask to control
whether tasks generate CI aware result files, like JUnit-style XML reports.

• The built-in tasks padv.builtin.task.RunTestsPerModel and
padv.builtin.task.RunTestsPerTestCase no longer support test cases that run test
iterations in fast restart.

4 Version History

4-34

• Pipeline Generation

• The property ArtifactsWhen will be removed from padv.pipeline.GitLabOptions in a
future release. Use the property EnableArtifactCollection to specify when artifacts are
collected instead.

(continues on next page)
• The property SaveArtifactsOnSuccess will be removed from

padv.pipeline.JenkinsOptions in a future release. Use the property
EnableArtifactCollection to specify when artifacts are collected instead.

 June 2023

4-35

April 2023
Supports:

• R2023a
• R2022b Update 1 (and later updates)
• R2022a Update 4 (and later updates)

Features:

• The pipeline generator automatically generates JUnit-style XML reports for tasks. The JUnit
reports allow you to see a summary of task results directly in the GitLab or Jenkins user interface.
For information, see “Integrate Process into GitLab” on page 3-8 or “Integrate Process into
Jenkins” on page 3-14.

• The support package contains an example Dockerfile for creating a Docker container to run
MATLAB with the support package and other MathWorks products. For more information, see
“Create Docker Container for Support Package” on page 3-30.

• padv.ProcessModel has a property DefaultOutputDirectory which controls the
$DEFAULTOUTPUTDIR$ token in the example processmodel.m file. By default, Process Advisor
outputs files inside a PA_Results folder in the project root.

• You can filter the artifacts returned by built-in queries like
padv.builtin.query.FindCodeFolderForModel by using the properties IncludeLabel,
ExcludeLabel, IncludePath, and ExcludePath.

q = padv.builtin.query.FindRequirements(...
ExcludePath = "HighLevel");
run(q)

• The task padv.builtin.task.MergeTestResults now supports inputs that supply multiple
test results and supports dependencies on multiple predecessor tasks.

Compatibility Considerations
• Previously, several built-in tasks ran on either reference models (Ref) or top models (Top). These

tasks have been combined into a single task that can automatically run on both reference models
and top models:

Previous Built-In Task Name Current Built-In Task Name
padv.builtin.task.AnalyzeRefModelCode padv.builtin.task.AnalyzeModelCode
padv.builtin.task.AnalyzeTopModelCode
padv.builtin.task.GenerateCodeAsRefModel padv.builtin.task.GenerateCode
padv.builtin.task.GenerateCodeAsTopModel
padv.builtin.task.RunCodeInspectionAsRefModel padv.builtin.task.RunCodeInspection
padv.builtin.task.RunCodeInspectionAsTopModel

(continues on next page)

4 Version History

4-36

Update your code to use the current built-in task names or instances.

% Using current built-in task instances
psTask = pm.addTask(padv.builtin.task.AnalyzeModelCode());
codegenTask = pm.addTask(padv.builtin.task.GenerateCode());
slciTask = pm.addTask(padv.builtin.task.RunCodeInspection());

If you want the task to only run on either reference models or top models, you can use the
properties of the task (TreatAsRefModel or IsTopModel) to override the default behavior. For
example:

% To override the default behavior

psRefTask = pm.addTask(padv.builtin.task.AnalyzeModelCode(...
 TreatAsRefModel = true,...
 IterationQuery = padv.builtin.query.FindRefModels));

codegenRefMdlTask = pm.addTask(padv.builtin.task.GenerateCode(...
 TreatAsRefModel = true,...
 IterationQuery = padv.builtin.query.FindRefModels));

slciRefTask = pm.addTask(padv.builtin.task.RunCodeInspection(...
 IsTopModel = false,...
 IterationQuery = padv.builtin.query.FindRefModels));

If your process model uses multiple instances of a task, like
padv.builtin.task.RunCodeInspection, make sure to specify a unique Name for each
instance of the task.

% Provide unique names

slciTopTask = pm.addTask(padv.builtin.task.RunCodeInspection(...
 Name = "inspectCodeTop",...
 Title = "Inspect Code (Top)",...
 IsTopModel = true,...
 IterationQuery = padv.builtin.query.FindTopModels));

slciRefTask = pm.addTask(padv.builtin.task.RunCodeInspection(...
 Name = "inspectCodeRef",...
 Title = "Inspect Code (Ref)",...
 IsTopModel = false,...
 IterationQuery = padv.builtin.query.FindRefModels));

• The options structures, RunOptions and ReportOptions, for built-in tasks will be removed in a
future release. The options structures have been replaced by properties of the built-in tasks. To
reconfigure a built-in task, use the properties of the task instead.

For example:

Previously Now
maTask.RunOptions.ReportPath maTask.ReportPath

You can open the source code for a built-in task to see a mapping of the options structure to the
task properties. For example:

open padv.builtin.task.RunModelStandards

 April 2023

4-37

The getLegacyOptions function shows the mapping. For example:

function options = getLegacyOptions()
options = [...
 "RunOptions.CheckIDList", "CheckIDList" ...
 "RunOptions.DisplayResults", "DisplayResults"...
 "RunOptions.Force", "Force" ...
 "RunOptions.ParallelMode", "ParallelMode" ...
 "RunOptions.TempDir", "TempDir" ...
 "RunOptions.ShowExclusions", "ShowExclusions" ...
 "RunOptions.ExtensiveAnalysis", "ExtensiveAnalysis" ...
 "RunOptions.ReportName", "ReportName" ...
 "RunOptions.ReportFormat", "ReportFormat" ...
 "RunOptions.ReportPath", "ReportPath" ...
];
end

4 Version History

4-38

March 2023
Supports:

• R2023a
• R2022b Update 1 (and later updates)
• R2022a Update 4 (and later updates)

Features:

• The support package now supports R2023a.
• Starting in R2023a:

• The support package can analyze artifacts in referenced projects.
• The Project Analysis Issues pane returns warnings for artifacts in the project.

The number of errors and warnings in the project are summarized at the bottom of the Process
Advisor app.

 March 2023

4-39

February 2023
Supports:

• R2022b Update 1 (and later updates)
• R2022a Update 4 (and later updates)

Features:

• Automatically generate a pipeline file for a Jenkins pipeline by using the function
padv.pipeline.generatePipeline. For more information, see “Integrate Process into
Jenkins” on page 3-14.

• The CI options for pipeline generation have two new properties:

• AddBatchStartupOption — Specify whether to open MATLAB using the -batch startup
option

• GeneratedPipelineDirectory — Specify where the generated pipeline file generates
• padv.Task has new properties:

• AlwaysRun — If you specify AlwaysRun as true, the task will always run, even if the task
results are already up to date.

• LaunchToolText — Specify a tooltip for a custom launch action for a task.
• OutputDirectory — Location for standard outputs that the task produces
• CacheDirectory — Location for additional cache files that the task generates

• The built-in query padv.builtin.query.FindArtifacts accepts a cell array of multiple
artifact types for the ArgumentType argument. For example, to find the Simulink models and
MATLAB M files in a project:

q = padv.builtin.query.FindArtifacts(...
ArtifactType={"sl_model_file","m_file"});
run(q)

Fixes:

• In the standalone Process Advisor window, Linux users can point to a task and click the ellipses
(...) without having to use the arrows on the keyboard to interact with the options in the menu.

Compatibility Considerations
• The ArtifactsPath property was removed from padv.pipeline.GitLabOptions and

padv.pipeline.JenkinsOptions. If you previously specified the ArtifactsPath property,
update your code to no longer specify ArtifactsPath. The pipeline generator uses the
OutputDirectory property of the task to automatically identify which artifacts to collect.

4 Version History

4-40

December 2022
Supports:

• R2022b Update 1 (and later updates)
• R2022a Update 4 (and later updates)

Features:

• Automatically generate a pipeline configuration file for a GitLab pipeline by using the new
function padv.pipeline.generatePipeline. For more information, see “Integrate Process
into GitLab” on page 3-8 or enter:

help padv.pipeline.generatePipeline

• Open the tool associated with a task by pointing to the task in the Process Advisor app and
clicking the ellipsis (...) and then Open Tool Name.

• Automatically view detailed statuses, inputs, outputs, and dependencies for tasks and task results
shown in the Process Advisor app.

• The built-in task Design Error Detection now outputs the Simulink Design Verifier data file as an
output in the I/O column.

• Find artifacts in your project that meet specific search criteria by using the new built-in query
padv.builtin.query.FindArtifacts.

For information, enter:

help padv.builtin.query.FindArtifacts

• Find requirement sets in your project and requirement links to models by using the new built-in
queries padv.builtin.query.FindRequirements and
padv.builtin.query.FindRequirementsForModel, respectively.

 December 2022

4-41

November 2022
Supports:

• R2022b Update 1 (and later updates)
• R2022a Update 4 (and later updates)

Features:

• You can now open artifacts, in their associated tool, directly from the Process Advisor app. In the
Tasks column, point to the name of an artifact and click the hyperlink.

• When there is a new version of the support package available, the Process Advisor app shows an
update icon in the bottom-right corner.

• The built-in task for generating a Simulink Web view now includes additional options like the
ability to include user notes and export models in subfolders. To view the source code for the task,
enter this code in the MATLAB Command Window:

open padv.builtin.task.GenerateSimulinkWebView

Fixes:

• The Process Advisor app respects requests to cancel artifact analysis.
• The task padv.builtin.task.AnalyzeModelCode returns an error if Polyspace Bug Finder is

either not installed or not linked to the current MATLAB installation.

4 Version History

4-42

October 2022
Supports:

• R2022b Update 1 (and later updates)
• R2022a Update 4 (and later updates)

Features:

• The support package now supports R2022b for Update 1 and later updates.
• Turn off incremental builds for a project by clearing the Incremental Build check box in the

Process Advisor app.
• The build system and Process Advisor app take advantage of runsAfter relationships when

determining the task execution order for tasks associated with the project.

 October 2022

4-43

September 2022
Supports:

• R2022a Update 4 (and later updates)

Features:

• You can create a new example project instance that includes an example YAML file for configuring
GitLab pipelines:

processAdvisorGitLabExampleStart

The example YAML file, .gitlab-ci.yml, is in the project root.
• You can create a new example project instance that includes an example Jenkinsfile for
configuring Jenkins pipelines:

processAdvisorJenkinsExampleStart

The example Jenkinsfile, Jenkinsfile, is in the project root.
• Test harnesses are now tracked as dependencies for test cases.
• Externally-saved input or output baselines (including .mat and Excel) are now tracked as

dependencies for test cases.

Fixes:

• If you are using the project window and there is an error, the error dialog is able to open the
artifact listed in the hyperlink.

4 Version History

4-44

August 2022
Initial release.

Supports:

• R2022a Update 4 (and later updates)

 August 2022

4-45

	Run Tasks with Process Advisor
	Automate and Run Tasks with Process Advisor
	View and Modify Default Process
	Run Tasks and Review Results
	Identify Impact of Changes
	Rerun Impacted Tasks with Incremental Build
	Export Build Report
	Explore Other Options

	Programmatically Run Tasks
	Run Pipeline of Tasks
	View Available Tasks Iterations
	Generate Build Report

	Specify Settings for Process Advisor and Build System
	Project Settings
	User Settings

	Locally Reproduce Issues Found in CI
	Get Latest Project Files
	Download and Copy CI Artifacts into Project
	Debug in Process Advisor

	Customize Your Process Model
	Modify Default Process Model to Fit Your Process
	Open Project
	Create Process Model
	Inspect Default Process Model
	Section A — Add or Remove Built-In Tasks
	Section B — Modify Behavior of Built-In Tasks
	Section C — Specify Dependencies Between Tasks
	Section D — Specify Preferred Task Execution Order

	Overview of Process Model
	Process Model
	Tasks
	Queries
	Use Your Process

	Add Tasks to Process
	Open Process Model
	Add Tasks
	Built-In Tasks
	Custom Tasks

	Reconfigure Task Behavior
	Open Process Model
	Task Inputs
	Task Action
	Task Iterations

	Define Task Relationships
	Open Process Model
	Specify Relationships

	Find Artifacts with Queries
	Built-In Queries
	Custom Queries
	Dynamically Resolve Paths with Tokens

	Create Custom Tasks
	Custom Task that Runs Existing Script
	Custom Task for Specialized Functionality
	Example Custom Tasks

	Create Custom Queries
	Choose Superclass for Custom Query
	Define and Use Custom Query in Process
	Example Custom Queries

	Group Tasks with Subprocesses
	Open Process Model
	Add Tasks to Specific Subprocess
	Considerations for Subprocess Boundaries
	Example Process Model with Subprocesses

	Manage Multiple Build and Verification Workflows Using Processes
	Open Process Model
	Overview of Processes
	Define New Processes
	Use Specific Process

	Best Practices for Process Model Authoring
	Keep Process Model File in Project Root
	Make Sure Only One Process Model File on Path
	Review Untracked Dependencies
	Share Queries Across Tasks

	Exclude Files from Change Tracking in Process Advisor
	Process Model
	Task Inputs
	Task Outputs
	Handling Untracked Dependencies

	Test Tasks and Queries
	Open Project
	Find Artifacts Using Query
	Run Task for Specific Artifacts

	Dry Run Tasks to Test Process Model
	Dry Run Tasks
	Dry Run Results
	Specify Dry Run Functionality for Tasks

	Troubleshoot Missing Tasks, Artifacts, and Dependencies
	Artifact Issues
	Project Analysis Issues
	Limitations on Incremental Build
	Other Limitations
	Handling Invalid Dependencies
	Analyze Project From Scratch

	Integrate Process into CI
	Approaches to Running Processes in CI
	Before You Integrate
	GitHub
	GitLab
	Jenkins
	Other Platforms

	Integrate Process into GitHub
	Set Up GitHub Project and Runner
	Connect MATLAB Project to GitHub
	Generate Pipeline Configuration File
	Use Pipeline Configuration File in GitHub Actions Workflow

	Integrate Process into GitLab
	Set Up GitLab Project and Runner
	Connect MATLAB Project to GitLab
	Configure Template to use GitLab Runner
	Make Optional Customizations
	Generate Pipeline in GitLab
	Optional Customizations

	Integrate Process into Jenkins
	Set Up Jenkins
	Connect Jenkins Project to Repository
	Configure and Use Jenkinsfile Template
	Make Optional Customizations
	Generate Pipeline in Jenkins

	Integrate Process into Other CI Platforms
	Before You Integrate
	Run MATLAB in Batch Mode

	How Pipeline Generation Works
	Summary of Support
	Generated Pipelines
	Optional Pipeline Customization
	Parallel Pipeline Architectures

	Tips for Setting Up CI Agents
	Product Installation
	Dry Run Your Process
	Set Up Virtual Display Machines Without Displays
	Create Docker Container for Support Package

	Best Practices for Effective Builds
	Use Incremental Builds for Regular Submissions
	Run Full Builds for Qualifying Software
	Cache Models and Other Artifacts Used During Build

	Version History
	September 2024
	Documentation
	Features

	July 2024
	Features

	June 2024
	Features

	May 2024
	Features

	April 2024
	March 2024
	Features

	February 2024
	Features

	December 2023
	November 2023
	October 2023
	September 2023
	August 2023
	July 2023
	June 2023
	April 2023
	March 2023
	February 2023
	December 2022
	November 2022
	October 2022
	September 2022
	August 2022

