

Home Appliance Controls Development using Model Based Design

Presented By : Priti Madurwar, Pranoti Joshi

Meeting // Date

Content

- About Whirlpool
- Model Based Development Process in Whirlpool
- Case Study : Universal Motor Controls Development
- Organisational Benefits through MBD

About Whirlpool

- World's leading major Home Appliance company
- Founded over 100 years ago
- ~\$21 billion in revenue in 2018
- 92,000 employees and 70 manufacturing and technology research centers
- 1 in 3 employees volunteer for taking care of our neighborhoods and the planet

Limitations of Traditional Software Development Process

MBD process in Whirlpool....Few years Ago

Current MBD Workflow in Whirlpool

Summary of MBD algorithm in different whirlpool products

Whirlpool

Universal Motor Controls Development

- Requirements breakdown
- Class Diagrams for Controller using SysML
- System Engineering Support for development of Universal Motor Plant Model
- Verification at Module level as well as integrated level.

Layer 1: System Requirements								
Control System Universal Motor								
	,							
Layer 2: Control System								
Motor Controller	Triac/Relays	HBL	Sensor Interfaces					
Layer 3: Motor Controller Algorithm Requirements								
Soft start	PID	Gain Scheduler	Tapped Field					
Layer 4: Motor Controller Model Requirements								
Soft Start	PID	Gain Scheduler	Tapped Field					

Algorithm Modeling Using Stateflow & Simulink

- Algorithm requirements have been implemented as a Simulink® model
 - Floating/Fixed point, Fixed step size
 - Use most convenient tools (Simulink, Stateflow, MATLAB code blocks)
 - Use referenced model
 - Use of Data Dictionaries
 - Capturing Model Metrics
 - Traceability

Stateflow, Matlab Functions, Simulink Blocks, Fixed Point Designer

Universal Motor and Washer Dynamics Plant Model

Plant Model Development

- Model Based System Engineering team support for Plant Model Development
- Use of Dymola/Modelica environment
- Calibration of Plant Parameters with Real Time Test Data

Open Loop Validation

Closed Loop Validation with Basic Control

Integration of Control Model and Plant Model

Use of Functional MockUp units for leveraging Dymola Plant Models in Simulink

Provides Capability to find robustness of the logic at system level.

Allows to perform System Level verification

Simulink PSP Toolbox till 2016 Inbuilt Simulink FMI kit feature 2017 onwards

Whirlpool Corporation - Confidential

Verification and Validation

Simulink Design Verifier

Whirlpool Corporation - Confidential

Requirement Linking from Simulink to DNG

Whir

Application of Simulink V&V & Design Verifier

Simulink Validation & Verification

1. Cumulative coverage results on multiple tests

Summary							
Model Hierarchy/Complexity		Test 1 Decision	Condition	MCDC	Execution		
1. UncSupervisor	34	100%	100%	100%	100%		
2EiterSpeedCommand	8	100%	100%	NA	100%		
3 Driect Change		NA	100%	NA	100%		
4Detect Changel		NA	100%	NA	100%		
5 If Action Subsystem	3	100%	100%	NA	100%		
6 If Action Subsystem		NA	NA	NA	100%		
7 If Action Subsystem1	2	100%	NA	NA	100%		
8	2	100%	NA	NA	100%		
9 <u>UmcSupervisorLogic</u>	25	100%	100%	100%	100%		
10SF: UniversalMotorControl UmcSupervisor.UmcSupervisorLogic	24	100%	100%	100%	100%		
11 SF: RUNNING	16	100%	100%	100%	NA		
12SF: SetFault	1	100%	NA	NA	100%		
13 <u>SetFault</u>	1	100%	NA	NA	100%		

2. Identified missing coverage

3. Traceability between DOORS requirements and Model

Simulink Design Verifier

Check for risks of software design errors prior to implementation Integer overflow, division by zero, range violations, dead logic

Code Generation and Integration

Achieving Optimized Code: (reference MATLAB EXPO 2018)

Whirl

- Use of Model Advisor to apply and establish best Modeling practices
 - MAAB/MISRA C, ISO/IEC Standards etc
 - Simulink and Stateflow guidelines

- Model Advisor Guidelines

Advantages of Model Based Design

- **Consistent design flow from conception to implementation using same language**
- **Detecting errors in early stages of Software Development**
- **Easy to deploy code in different projects by managing variant subsystems.**
- **Easy to handle change requests without impact on timelines.**
- □ Very few defects in released softwares
- □ Early observation for unexpected emergent behavior.
- **Good Test Management**

*Whirlpool Corporation ownership of the Hotpoint brand in EMEA and Asia Pacific regions is not affiliated with the Hotpoint brand sold in the Americas.

Whirlpool Corporation - Confidential

THANK YOU!

JOIN THE CONVERSATION

@WhirlpoolCorp
LinkedIn.com/company/Whirlpool-Corporation
WhirlpoolCorp.com