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Why Virtual Sensors? When estimating a quantity that is not
measurable

Battery State of Charge (SOC)

Not directly measurable

We measure voltage, current, temperature and calculate SOC
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Agenda

Develop Al-based virtual sensor for
battery SOC estimation

Workflow - From data acquisition to
hardware deployment

= Compare different Al methods
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Battery State of Charge (SOC)

1 t
S0C(t) = > f I(p)dp

0\

capacity current

Affected by sensor error
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Extended Kalman Filter

Well established

current ~ voltage measurement
Accurate m

Detailed battery model required

— Operating condition range /l)
Kalman N
Computationally intensive " Filter
battery
'_'HHHHW ” model voltage
RO estimation

— SOC
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How About...

voltage —

current ——

temperature ——

Instead of creating a physics-based model —
Train a Statistical Model



Comparison

MATLAB BEXlPO

Al

Training on real data

Capture very complex data
relationships

No need for battery model
Interpretability

Computationally intensive
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Al-driven System Design

Al Modeling Simulation & Test Deployment

Voltage  Current  Temperature
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Steps involved in creating an Al-based virtual sensor
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Back to SOC estimation
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Robust xEV Battery State-of-Charge Estimator
Design Using a Feedforward Deep Neural Network
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Abstract

B attery state-of-charge (SOC) is critical information

for the vehicle energy management system and must
be accurately estimated to ensure reliable and afford-
able electrified vehicles (xEV). However, due to the nonlinear
temperature, health, and SOC dependent behaviour of Li-ion

(FNN) approach. The method includes a description of data
acquisition, data preparation, development of an FNN, FNN
tuning, and robust validation of the FNN to sensor noise.
To develop a robust estimator, the FNN was exposed, during
training, to datasets with errors intentionally added to the
data, e.g. adding cell voltage variation of £4mV, cell current



Data Preparation !
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McMaster

University Qe
454

Feed-forward NN

SOC

accurately
calculated
In the lab

Feed Forward NN Is simple — but it has no memory

Moving average added to the input signals

Data source https://data.mendeley.com/datasets/cp3473x7xv/3 13
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Import Pre-Trained Model

TF importer 4\ @
T TensorFlow  —) e <¢p O PyTorch
MATLAB ONNX

You can also import an Al model trained outside of
the MathWorks ecosystem into MATLAB
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With Variant Subsystems
we can implement several
Al functions in the same
model and try them one at
a time
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Processor-in-the-Loop (PIL) Testing
on ARM Cortex-M7 Processor
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Referenced Files
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Finally, we can configure
the model for Processor In
the Loop execution

1- Configure hardware
and communication ports
2- Select PIL execution

3- Code Is generated for
the Al function subsystem
and downloaded onto the
evaluation board

4- The algorithm now runs
on target
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' Tradeoffs and Benchmark

Training Speed
Interpretability
Inference Speed *
Model Size *

Accuracy (RMSE)

EKF Tree FFN LSTM
Extended Kalman Filter Fine Regression Tree 1-hidden layer Stacked Long Short-Term
Feedforward Network Memory Network
N/A O O O

Results are specific to this example

* NXP S32K344 board

Here is a comparison among Al methods and the EKF
benchmark

There is a trade-off among training effort, predictive
accuracy, and on-target execution time
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User Stories /&) Gotion

Onboard Battery Pack State of Charge
Estimation Using a Neural Network

MathWorks AUTOMOTIVE CONFERENCE 2022
o MathWorks Automotive Conference 2022
K P I -I videos available on demand

7th April 2022

Battery SOC and SOH
Estimation using a Hybrid
Machine Learning Approach
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Summary

Voltage
Current
Temperature

= Develop Al-based Virtual Sensor for Battery SOC Estimation

= Workflow - From Data Acquisition to Hardware Deployment

Compare Different Al Methods
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