

System-level Simulation of an Aperture Array Beamformer

Kaushal D. Buch¹, Sreekar Sai Ranganathan², and Bela S. Dixit¹

¹Giant Metrewave Radio Telescope (GMRT), NCRA-TIFR, Pune, India ²Indian Institute of Technology Madras, India kdbuch@gmrt.ncra.tifr.res.in

MATLAB EXPO 2022

17-18th May 2022 (Online)

Aperture Arrays

- Beamforming & spatial filtering using array of antenna elements along with associated RF & digital signal processing systems
- Applications: Communication, array signal processing, radar signal processing, radio astronomy
- Challenges: Calibration in presence of Mutual Coupling, Complex signal processing

Aperture Arrays in Radio Astronomy

- Radio telescopes detect radio emissions from the stellar objects
- Aperture arrays provide Wider Field-of-View (FoV), Increased Survey Speed, and Better Sensitivity

Image Courtesy: ASTRON

Aperture Arrays in Radio Astronomy

Expanded GMRT: Aperture Array Development

Aperture Array Beamformer Simulation

Free-space Test Range

Major Components of Simulation Model

Modeling Vivaldi Antenna Array

```
m=vivaldiOffsetCavity('TaperLength', h1,...
    'ApertureWidth', wh,...
    'OpeningRate', R....
    'TaperedSlotWidth',ws,... %dunno why added 5e-3
    'TaperOffset',0,...
    'CrossTaperLength', 0.1e-3,... %no crossing needed
    'SlotLineWidth', ws,...
    'CavityToTaperSpacing', ls1 + rs1,... % check ifs correct value
    'CavityShape','Circular',...
    'CavityOffset',[rs2 dmc],...
    'GroundPlaneLength', Lground,...
    'GroundPlaneWidth', Wground,...
    'FeedOffset', rs1 + ls2 - dmc,... % correct
    'Conductor', metal('PEC'),... % an also use specific metals
    'CavityDiameter', cavity dia);
save('vivaldiOffset.mat'.'m');
```

show(m);

The geometry of the array can be selected through a mask file e.g. C3-F3, C4-F4, C5-F5, and C6-F6

	А	В	С	D	E	F	G	Н
1	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0
3	0	0	1	1	1	1	0	0
4	0	0	1	1	1	1	0	0
5	0	0	1	1	1	1	0	0
6	0	0	1	1	1	1	0	0
7	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0

- Individual Vivaldi element pattern implemented using Antenna Toolbox
- Mutual coupling added in the receiver chain

Adding Mutual coupling

- Coupling matrix is based on impedance parameters of the N-element array.
- Data from the phased array is pre-multiplied by the coupling matrix.

orrela	ation N	Magnit	ude -	OFF (C	hanne	el 512)	, CONI	DNO:4.	340	008
1	ı	0.3334	0.1265	0.08902	0.1158	0.03095	0.02413	0.05736		0.9
2	0.3334	1	0.2054	0.2075	0.09625	0.06333	0.08764	0.04737	-	0.8
3	0.1265	0.2054	1	0.3307	0.09592	0.1434	0.09834	0.09492	-	0.7
4	0.08902	0.2075	0.3307	1	0.3563	0.07806	0.04185	0.1649	-	0.6
5	0.1158	0.09625	0.09592	0.3563	1	0.1601	0.07636	0.1486		0.5
6	0.03095	0.06333	0.1434	0.07806	0.1601	1	0.2755	0.05052	-	0.3
7	0.02413	0.08764	0.09834	0.04185	0.07636	0.2755	1	0.3585	-	0.2
8	0.05736	0.04737	0.09492	0.1649	0.1486	0.05052	0.3585	1	-	0.1
	1	2	3	4	5	6	7	8		
Cross-correlation between the element										
esul	tina	fror	n m	nutua		nilqu	na (8x1	li	neo
		•				- 1	5 (
arra	y). D	iago	nal r	epre	sent	s aut	0-COI	rrela	loi	n

Pratschner, Stefan, et al. "A mutual coupling model for massive MIMO applied to the 3GPP 3D channel model." 25th European Signal Processing Conference (EUSIPCO). IEEE, 2017.

Adding Gain & Phase Variations

Randomized gain is implemented through a multiplying factor
 Randomized phase is implemented via RF phase shifters (RF Toolbox)

System Simulation Model

Transmit tone or broadband noise
 Multiple transmitters
 Variable array elements & array config.

Randomized receiver gain and phase
 Programmable mutual coupling
 Multi-beam beamformer and correlator

End-to-End System-level Simulation

Beam-steering & Multi-beamforming

Optimal Beamforming

M. V. Ivashina et al., "An Optimal Beamforming Strategy for Wide-Field Surveys With Phased Array-Fed Reflector Antennas", IEEE Transaction on Antennas and Propagation, July 2011

maxSNR Algorithm: Simulation Video

Beam-steering Comparison with Experimental Test

- Aperture array beamforming simulator developed using toolboxes of MATLAB & Simulink
- Beam-steering and beamforming tested for different RF and antenna configurations.
- Simulation results provided insight on implementation trade-offs for calibration & beamforming prior to the actual experiment.

□Future Work: HDL code generation and testing

