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The answer might be in the physical structure!

Springer Tracts in Advanced Robotics 124

Gentiane Venture - Jean-Paul Laumond
Bruno Watier Editors

@_ Springer
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Other limitations
* No model of the plant

« A precise model of the system is not available in many LUKE
scenarios SKYWALKER

N

« Even when there is a model, it will lack many details
such as skin effects

« Changes in the system H—

Contact dynamics

« No model of environment

* Is only available for simulations or lab environment :
(even then, it will be with great simplifications) 5

« Will not be applicable for unpredictable scenarios such
as natural disasters or exploration missions



https://news.usc.edu/69355/perfecting-a-fully-functioning-prosthetic-hand/

Other limitations (continued)

300

111 SRCERSER SRR e 08 TS, N (S—

* Real-time feedback is not available in many & | G i N
scenarios including biological systems T NGUNON NN Y 0. I — —

¢ P2

+ Systems that heavily rely on error-correction are * [\ ]

prone to instability and can consume lots of power ol

0 100 200 300 400 500 600

Amplitude (arbitrary units)

« Data/time efficiency

« Data/time limitations in physical world are strict
* Opportunity Cost

« Evolutionary pressure

- . Hoffman et al., 2008
USC Viterbi Youtu be.com/Alltime10s
g I DO 1€ 1a
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Problem statement

* Producing autonomous functional movements in a

tendon-driven system

«  With limited experience

 Without any prior model or
simulation of the system or the
environment

« Without any real-time feedback

USC Viterbi
School of Engineering

University of Southern California



How did we solve this? « 3 tendons

e 2 DoFs

* Back-drivable motors

Dario e Y
Urbina-Meléndez =SS

USC Viterbi

School of Engineering o Southern California




How did we solve this?

« Two-level control structure (Hierarchical learning)

 Lower-level

« Create an initial inverse model using data
collected from motor babbling

« Higher-level

« Explore a reduced set of task parameters via
reinforcement learning

* Refine the inverse model (lower-level) with
every each attempt

USC Viterbi

School of Engineering

Universityo

f Southern California



« G2P: Motor Babbling (lower-level controller) Learning &

Control
G2P Algorithm

A

Input Actuations
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« G2P: Reinforcement Learning (Higher-level controller) Learning &

Control
G2P Algorithm

Generate desired task dynamics task specific attempts

See part H II:\)

7
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G2P: Reinforcement Learning (Higher-level controller) Learning &
Control

G2P Algorithm

Each element in F, transforms into The limit-cycle will transform into the
a radius of a cyclical trajectory desired dynamics for each joint (e, e,)

USC Viterbi

ngineering

f Southern California



« G2P: Reinforcement Learning (Higher-level controller) Learning &

Control

Each element in F_transforms into The limit-cycle will transform into the .
a radius of a cyclicKal trajectory desired dynamics for each joint (e, e,) G2P A|g0rlthm
f1
L]
L]
f, €
L]
.
f10
FK
€, time

Generate desired task dynamics

|7 see part [ —— I‘?,
K

task specific attempts

@A—
R,

Update model based
l on trajectory attempt dat:
P

K )aK
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Results
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Results

Sequential attempts on the same desired trajectory >

1 2 3 4 5
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100 - | I |

Error across independent runs
and cycle indices (mean m.s.e.)
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(iv) One cycle (s)
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Results

Treadmill Reward (mm)

400 ]

300 {

200 {

100
64

Good-enough gets you a long way!

55
Mean power of an attempt (W)

Colors represent the independent
reinforcement runs, and match with
the figure above.

A First attempt to break
above the reward threshold

Attempt which yielded
the highest reward

Attempt

Polygons show the enclosing shape
for all attemps of a given replicate that
yielded an above-threshold reward.
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Results
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What 1s next?

USC Viterbi

School of Engineering Un i\-’CI‘Si‘L’}_-" of Southern California



What is the added value by MATLAB to this project?

Common among many academic disciplines

Flawless inter-toolbox communications

Reproducibility

Excellent support

" WMTT/\T’B’

USCVlterbl

School of Engineering University of Southern California
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See, Feel, Act: Hierarchical Learning for Complex Manipulation Skills with Multi-sensory Fusion
Nima Fazeli et. al. 2019

USC Viterbi

School of Engineering UI'liVCl‘Sity of Southern California



Dexterous Manipulation with
Deep Reinforcement Learning:

— “A)]

/

https://sites.google.com/view/deeprl-handmanipulation

USC Viterbi

School of Engineering [JIIi\«’CI‘Sit}f of Southern California



ROBEL: RObotics BEnchmarks for Learning with low-cost robots

ROBEL's open source platforms are modular, easy to build and extend

USCViterbi

Sch:

ngineering



Learning Dexterous Manipulation Policies from

Experience and Imitation

Vikash Kumar*, Abhishek Gupta®, Emanuel Todorov*, Sergey Livine#

*University of Washington, Seattle “University of California, Berkeley

International Journal of Robotics Research

https://arxiv.org/pdf/1611.05095.pdf
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https://github.com/vikashplus/Adroit
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Thank you!
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Supplementary slides
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Trajectories

Motor 2

One possible time history of
feasible command signals

Motor 1 SRS m Motor 3 Motor 3

Kinematic
trajectory

Motor 2

USC Viterbi

School of Engineering



Trajectories
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Trajectories
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Table 1| Pseudo code for the RL

while R < Reward_threshold
f_bar=Uniform_distribution([0.15, 1]")
R =execute(F_bar)
end
F_best=F_bar
R_best=R
fori=115
F_bar=Normal_distrubution(F_best, sigma.*Identity(10))
F_bar=max(min(F_bar, {_M), f_m)
R=execute(F_bar)
if R>R_best
R_best=R
F_best=F_bar
sigma=(a-R_best)/b

end

end

USC Viterbi

School of Engineering
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« Aim 2: Assessing the contribution of sensory signals on learning and devise efficient

method to collect and utilize them
« Aim 2.1: Using simple kinematic feedback to compensate unmodeled dynamics

(perturbations, contact dynamics, model inaccuracies) and to enhance the learning process

&
Control \_/

* Robustness to delays and noise in sensory signal

Minimalistic approach

* Robustness to unmodeled dynamics (joint angle readings only)

« Minimal reliance on feedback » Tendon-driven (2-DoF 3-tendons)
* Generalizable to different designs

« Enhances both performance and learning

USC Viterbi

School of Engineering niv »f Southern California




« Aim 2: Assessing the contribution of sensory signals on learning and devise efficient

method to collect and utilize them
« Aim 2.1: Using simple kinematic feedback to compensate unmodeled dynamics

(perturbations, contact dynamics, model inaccuracies) and to enhance the learning process

Error .
Detector Ag‘iu ?]tél]Tg
9 Output
Controller— Plant B

Feedback <
Elements

Feedback
Signal

AutomationForum.co
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« Aim 2: Assessing the contribution of sensory signals on learning and devise efficient

method to collect and utilize them

« Aim 2.1: Using simple kinematic feedback to compensate unmodeled dynamics

(perturbations, contact dynamics, model inaccuracies) and to enhance the learning process

| PID controller Gp;p(s) :
| |
I p P < Ke(r) I
| |
R E@s) | r N
(s) (s) i > I/SHKJ o(2)dr : (ﬂ
| (D 0 |
| S de(t) |
: ") < Ky !

Plant G(s)

Y(s)

USC Viterbi
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« Aim 2: Assessing the contribution of sensory signals on learning and devise efficient

method to collect and utilize them
« Aim 2.1: Using simple kinematic feedback to compensate unmodeled dynamics

(perturbations, contact dynamics, model inaccuracies) and to enhance the learning process
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2 + = 7
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arXiv:1907.04539 18
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Results:

Simple Kinematic Feedback Enhances Autonomous
Learning in Bio-Inspired Tendon-Driven Systems

Physical System Demonstrations

arXiv:1907.04539 19
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Physical system results:

arXiv:1907.04539 20
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Physical system results:
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Simulation results:

arXiv:1907.04539 22
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Simulation results:

arXiv:1907.04539 23
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Results (cntd.):

© open-loop | * Enhanced accuracy in all experiments
~ & close-loop
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