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Use of Al in signal processing applications is growing rapidly

UT Austin Researchers Convert Brain Signals to Words and

Phrases Using Wavelets and Deep Learning

Battelle Neural Bypass Technology Restores Movement to a

Paralyzed Man’s Arm and Hand

Patient using the Battelle NeurolLife system

Shell performs Seismic Event Detection with Deep Learning

Challenges
= Terabytes of passive seismic data from geophones
= Traditional methods time/labor intensive (5 months &~ $100K)
= Event detection inconsistent/unreliable in ‘low’ signal to noise
records

Solution
= Train LSTM network to detect P-wave and S-wave arrivals via
sequence-to-sequence classification

S-Arrival (Observed) Arrival Time
e

S-Arrival (Prediction)

Results
= >08% accuracy for arrival prediction

= Networks generalizes to other data (sites, source
mechanisms)
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How Al and Signal Processing Came Together to Track the DNA of Sound
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Modulation Classification of RF waveforms
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Modulation Classification of RF waveforms
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Modulation Classification of RF waveforms
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Modulation Classification of RF waveforms
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Preparing and labelling data

Data Preparation

'|‘|||‘|' Data cleansing and
preparation

Q Human insight

Simulation-generated
data

Q. How to label collected data?

Q. What If it Is not possible to collect
data?



Labeling Signals with Signal Labeler App

Label Definitions

Name
ECG_Signal_1
ECG_Signal_2
ECG_Signal_3
ECG_Signal_4
ECG_Signal_5
ECG_Signal_6
ECG_Signal_7
ECG_Signal_8
ECG_Signal_9
ECG_Signal_10

Labeled Signal Set Browser

Plot
v
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Locati...

Locati...

ALUL

Time
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Fs
Fs
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Generate Synthetic Data for various applications in MATLAB
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Generate Synthetic Data for various applications in MATLAB

Simulate data using Simulink models

F. B
+ @ R R =
+ 4 Load
o
. Motar "
J?_ ump ol
. .
Triplex Pump with Faults
@:
i Works, W roperties

4\ MathWorks



Generate Synthetic Data for various applications in MATLAB

Vs

Simulate data using Simulink models

+ R R
] |
. Motar

3 Purmp Input Manifold

Triplex Pump with Faults @:

Copyright 2017-2018 The MathWorks, Inc. Flow Properties
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Generate wireless waveforms
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Generate Synthetic Data for various applications in MATLAB

Generate Radar Returns

Fres =326.9739 Hz, Tres = 7.85 ms

Simulate data using Simulink models Generate wireless waveforms
(0]
Triplex Pump with Faults @: o
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Generate Synthetic Data for various applications in MATLAB

Simulate data using Simulink models Generate wireless waveforms
i EE]
' : _';_Lo d
J?_ Pump 3 Input Manifold ) )
Triplex Pump with Faults g
- ; o L
Generate Radar Returns Generate and Augment Audio Data
: text2speech
;é z % Original
g . g Pitch shift
4 Time stretch Extended
i Add noise P
-‘: 50 100 150 200 250 300 350 400 450 ggtgalgzl Add reverberation
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Generation of wireless communication waveforms with impairments
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Generation of wireless communication waveforms with impairments

File Tools View Playback Help

*Modulate digital baseband signals using built-in functions
BPSK, QPSK, 8PSK, FM, DSB-AM, SSB-AM, GFSK,PAM4
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Generation of wireless communication waveforms with impairments

File Tools View Playback Help

*Modulate digital baseband signals using built-in functions
BPSK, QPSK, 8PSK, FM, DSB-AM, SSB-AM, GFSK,PAM4

|l i) q{hﬁ}.ﬁll{i#mﬁ‘#lﬁ%m#“s% i\%# ‘ﬁ.“,,qll{\f“gnj

g

.

Easily account for various impairments éﬁri.’f%%ﬁ“'
*RF / Hardware impairments (Frequency/ Phase Offsets etc. ) »

« Channel Impairments (Multipath Fading Channels)

Rician Multipath

multipathChannel = comm.RicianChannel(...
‘SampleRate’, fs, ...
‘PathDelays’, [@ 1.8 3.4]/fs, ...
~agePathGains', [@ -2 -18], ...
KFactor', 4, ...
*MaximumDopplerShift', 4)

multipathChannel =
comm.RicianChannel with properties:

SampleRate: 2080000
Pa:hDelays: [@ 9.80@8@=-86 1.7088e-85]

AveragePathGains: [@ -2 -18]
Ho"ma;izePa:kGains: true
KFactor: 4
DirectPathDo ppl rShift: @
DirectPathInitialPha e
Max mDo ppl rshift: 4

DDpplerSpectPun: [1x1 struct]

Show all properties

LAB BXIPO &\ MathWorks



Generation of wireless communication waveforms with impairments

*Modulate digital baseband signals using built-in functions
BPSK, QPSK, 8PSK, FM, DSB-AM, SSB-AM, GFSK,PAM4

Amplitude
Armplitude

Amplitude
[ ] =
= =
L = L

*Easily account for various impairments

Time {ms) Time (ms) Time (ms)

‘RF / Hardware impairments (Frequency/ Phase Offsets etc. ) fime (s
« Channel Impairments (Multipath Fading Channels)

CPFsSK

Amplitude
Armplitude

Amplitude
o |
= [=]
Amplitude
o o
= =] =

B-FM
|:|.c|5W 0.05 0.1
' I | ¥
0 MM 0 :
I L
M 0.05
0.055 5 0 5

Time (ms) Time {ms) Time (ms) Time (ms)

« Generate Datasets for Deep Learning

« 5000 frames generated for each modulation type
« 80% data — Training; 10% data — Validation; 10% data - Test
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Feature Extraction

Data Preparation

'|‘|||‘|' Data cleansing and
preparation

Q Human insight

Simulation-generated
data

Q. Can | use raw data?

Q. How do | extract the right features
for my data?



Use of raw data for Al models
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Use of raw data for Al models
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Use of raw data for Al models
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Challenges with Raw Data

éa )
High
Dimensionality
g ,
éa )
Need for more data
g ,
éa )
Need for
specialized models
g ,
4\ MathWorks
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Feature extraction with signal processing techniques
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Feature extraction with signal processing techniques

Time-Domain Features

aaaaaa

A « Signal Patterns
~ ! \/ « Changepoints
[ +  Peaks
« Signal Envelope
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Feature extraction with signal processing techniques

-

Time-Domain Features
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Feature extraction with signal processing techniques

-

Time-Domain Features

; « Signal Patterns
a\ o « Changepoints
AN « Peaks
« Signal Envelope
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« STFT
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Feature extraction with signal processing techniques

Time-Domain Features Frequency-Domain Features
; « Signal Patterns X
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« Peaks
N\ g sofif il '«i'v'r'a‘,. T R o Ar
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Building the Al models

Al Modeling

o Mol desin an Q. How do | select the right model for
e my application:

Hardware - If I do not have enough data?

— acceleratediraining If | do not have domain expertise?

,};;, y « If I need an easily interpretable model?
Interoperability
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art by using published literature and MATLAB examples

Deep Neural Network Architectures for Modulation
Classification

Xiaoyu Liu, Diyu Yang, and Aly El Gamal
School of Electrical and Computer Engincering
Purdue University
Email: {liul962, yang1467, elgamala} @purdue edu

Abstract—In this work, we investigate the value of employ- convolutional neural networks (CNN) to the task of radio
ing deep learning for the task of wireless signal modulation  modulation recos [

Automatic Modulation Recognition Using Wavelet
Transform and Neural Networks in Wireless Systems

K. Hassan, I. Dayoub, W. Hamouda & & M. Berbineau

recognition. Recently in [L], a framework has Iy
by generating a dataset using GNU radio that
imperfections in a real wireless channel, and uses

architecture was developed and shown to deliver

the framework of [1] and find deep neural network
that deliver higher accuracy than the state of the
the architecture of [1] and found it to achieve a
approximately 75% of correctly recognizing the m
We first tune the CNN architecture of [1] and
with four convelutional layers and two dense lay
an accuracy of approximately 83.8% at high S
develop architectures based on the recently introd|
' Residual Networks (ResNet [2]) and Densely Conne
(DenseNet [3]) to achieve high SNR aceuracies of o

Jan 2018

5

‘modulation tvpes. Further, a convolutional neural ng Time-Frequency Analysis based Blind Modulation Classification for Multiple-Antenna

that exceeds that of expert-based approaches. He| Systems

Weiheng Jiang®, Xiaogang Wu®, Bolin Chen®, Wenjiang Feng®, Yi Jin®

“School of Microelectronics and Communication Engineering, Chongqing University, Chongging 400044, China.
Xi*an Branch of China Acadeny of Space Technology, Xan 710100, China.

—
J 83.5% and 86.6%, respectively. Finally, we introd
1 lutional Long Shori-term Deep Neural Network (C|
== achieve an accuracy of approximately 88.5% at hif Abstract
7]
o I INTRODUCTION Blind modulation classification is an important step to implement cognitive radio networks. The multiple-input multiple-output
) (MIMO) technigue is widely used in military and civil communication systems. Due to the lack of prior information about channel
r: Signal modulation is an essential process in W = parameters and the overlapping of signals in the MIMO systems, the traditional likelihood-based and feature-based approaches
¢, munication systems. Modulation recognition taj ‘:‘_! cannot be applied in these scenarios directly. Hence. in this paper, to resolve the problem of blind modulation classification in
<f enally used for both signal detection and demod “—' nfinQ) systems, the time-frequency analysis method based on the windowed short-time Fourier transform is used to analyse the
=T signal transmission can be smoothly processed of B -
—_ . . P . time-frequency characteristics of time-domain modulated signals. Then the extracted time-frequency characteristics are converted
< signal receiver demodulates the signal correctly. ! ! & _ ¥ !
Z the fast of wireless icatiol L. into RGB spectrogram images, and the convolutional neural network based on transfer leaming is applied to classify the modulation

spectrum utilisation and enables intelligent decision-making for
context-aware autonomous wireless spectrum monitoring sys-
tems [2]. However, most of the existing MC methods are fo-
cussed on single-input single-output (SISO) scenarios, which
cannot be directly applied when multiple transmit antennas are
equipped at the transceivers [3]. Therefore, it is crucial to re-
search the performance of the MC method for MIMO commu-
nication systems.

Traditional MC approaches for the SISO systems discussed

i Xiv:

[«

1 and more high-end requiremes { types according to the RGB spectrogram images. Finally, a decision fusion module is used to fuse the classification results of all
: methods and parameters used in the receive antennas. Through simulations, we analyse the classification performance at different signal-to-noise ratios (SNRs),
., tems is increasing rapidly. The problem of how ™ the results indicate that, for the single-input single-output (SISO) network, our proposed scheme can achieve 92.37% and 99.12%
N modulation methods accurately is hence becomini —_ qverage classification accuracy at SNRs of -4 dB and 10 dB. respectively. For the MIMO network, our scheme achieves 80.42%
= I““g‘"g_ . . J and 87.92% average classification accuracy at -4 dB and 10 dB. respectively. This outperforms the existing classification methods
»< Traditional modulation recognition methods u: ) based on baseband signals
& prior knowledge of signal and channel parameter} =t " s ste
" be inaccurate under mild circumstances and nee Y1 Keywords: Time-Frequency Analysis, Blind Modulation Classifi n, Multiple- Antenna Systems, RGB Spectrogram Image
ered through a separate control channel. Hence,| ©J
b —_
autonomous modulation recognition arises in wire,
where modulation schemes are expected to chan, . e " :
i . e > i . = 1. Introduction fast modulation classification and blind modulation classifica-
as the environment changes. This leads to con: > . N
modulation recognition methods using deep neu ) L } tion (BMC). By contrast, the FB approaches cannot obtain the
Deep Neural Networks (DNN) have plaved a sif [~ The increase in communication dcmun_d.s and the shortage  oprimal result, but they have lower computational complexity
e of spectrum resources has caused the cognitive radio (CR) tand. and do not require prior information. The FB methods usually
« multiple-input multiple-output (MIMO) techniques to be im-  jnclude two steps: feature extraction and classifier design. The
< plemented in wircless communication systems. As one of the  higher-order statistics, instantancous statistics, and other fea-
<t CS“C“‘“ﬂ_ steps of CR mndu]?u_mn Cl“""‘l_ﬁf“f‘m‘ (MC) is widely  pyres are calculated in the feature extraction. Then the popular
< applied in both civil and military applications, such as spec-  classification methods, such as decision tree [7], support vector
< trum surveillance, electronic surveillance, electronic warfare, machine [8] [9]. and artificial neural network (ANN) [10] [11]
- and network control and management [1]. It improves radio 4 adopted as the classifiers.

With the rapid rise of artificial intelligence and the emerg-
ing requirements of intelligent wireless communication, deep
learning-based approaches are now becoming widely studied
and used in different aspects of wireless communication, such
as the transceiver design at the physical layer [12] and BMC
problems [13] [14] [15] [16] [17] [18]. As for BMC in SISO
scenarios, the raw in-phase and quadrature phase (IQ) data or
the time-domain amplitude and phase data can be directly used
as the input of the deep learning neural network. More specif-

in the literature can be classified into two main categaries: likelihood;e a1y the authors in [13] presented convolutional long short-

B EXIPO

g 2010, Article number: 532898 (2010) ‘ Cite this article

Metrics

nt characteristics used in signal waveform

br automatic digital modulation recognition is

bd using higher-order statistical moments (HOM)
la features set. A multilayer feed-forward neural
tion learning algorithm is proposed as a classifier.
rent M-ary shift keying modulation schemes and
nal information. Pre-processing and features
analysis is used to reduce the network complexity
. The proposed algorithm is evaluated through
ability. The proposed classifier is shown to be

me with high accuracy over wide signal-to-noise
Gaussian noise (AWGN) and different fading
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Deep Neural Network Architectures for Modulation
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Abstract—In this work, we investigate the value of employ- convolutional neural networks (CNN) to the task of radio
ing deep learning for the task of wireless signal modulation  modulation [

Automatic Modulation Recognition Using Wavelet
Transform and Neural Networks in Wireless Systems

K. Hassan, I. Dayoub, W. Hamouda 53 & M. Berbineau

recognition. Recently in [1], a framework has b
by generating a dataset using GNU radio that
imperfections in a real wireless channel, and uses
‘modulation types. Further, a convolutional neural nd
architecture was developed and shown to deliver
that exceeds that of expert-based approaches. Hel

“C the framework of [1] and find deep neural network

Time-Frequency Analysis based Blind Modulation Classification for Multiple-Antenna
Systems

be inaccurate under mild circumstances and nee
ered through a separate control channel. Hence,

" that deliver higher accuracy than the staie of the
a the anchiterture of [1] and fsmd it ta achiere w Weiheng Jiang®, Xiaogang Wu®, Bolin Chen®, Wenjiang Feng®, Yi Jin®
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~ an accuracy of approximately 83.8% at F Xi*an Branch of China Academy of Space Technology, Xi'an 710100, China.
1 develop archilectures based on the recently introd|
Residual Networks (ResNet [2]) and Densely Conne
—— (DenseNet [3]) to achieve high SNR accuracies of a
() #35% und 86.6%, respectively. Finally, we inirod
" lutional Long Short-term Deep Neural Network (C
== achieve an accuracy of approximately 88.5% at hif Abstract
7]
o I INTRODUCTION Blind modulation classification is an important step to implement cognitive radio networks. The multiple-input multiple-output
) (MIMO) technigue is widely used in military and civil communication systems. Due to the lack of prior information about channel
r: Signal modulation is an essential process in W <= parameters and the overlapping of signals in the MIMO systems, the traditional likelihood-based and feature-based approaches
¢, munication systems. Modulation recognition taj ‘::! cannot be applied in these scenarios directly. Hence. in this paper, to resolve the problem of blind modulation classification in
<f enally used for both signal detection and demod “—' nfinQ) systems, the time-frequency analysis method based on the windowed short-time Fourier transform is used to analyse the
=T signal transmission can be smoothly processed of B -
—_ . . P . time-frequency characteristics of time-domain modulated signals. Then the extracted time-frequency characteristics are converted
< signal receiver demodulates the signal correctly. . : & & ¥ 1
Z the fast of wireless icatiol L. into RGB spectrogram images, and the convolutional neural network based on transfer leaming is applied to classify the modulation
€1 and more high-end requirements, the number of <7 types according to the RGB spectrogram images. Finally, a decision fusion module is used to fuse the classification results of all
: methods and parameters used in wireless commul the receive antennas. Through simulations, we analyse the classification performance at different signal-to-noise ratios (SNRs),
., tems is increasing rapidly. The problem of how ™ the results indicate that, for the single-input single-output (SISO) network, our proposed scheme can achieve 92.37% and 99.12%
2 modulation methods accurately is hence becominj average classification accuracy at SNRs of -4 dB and 10 dB. respectively. For the MIMO network, our scheme achieves 80.42%
J=, Tenging. . . and 87.92% average classification accuracy at -4 dB and 10 dB. respectively. This outperforms the existing classification methods
¢ Traditional modulation recognition methods u 3 .
Y based on baseband signals
i prior knowledge of signal and channel parameter =
]

Keywords: Time-Frequency Analysis, Blind Modulation Classification, Multiple-Antenna Systems, RGB Spectrogram Image

autonomous modulation recognition arises in wire)
where modulation schemes are expected to chan,
as the environment changes. This leads to con:
modulation recognition methods using deep neu

Deep Neural Networks (DNN) have plaved a sif

1. Introduction

The increase in communication demands and the shortage
of spectrum resources has caused the cognitive radio (CR) and
multiple-input multiple-output (MIMO) technigues to be im-
plemented in wireless communication systems. As one of the
essential steps of CR, modulation classification (MC) is widely
applied in both civil and military applications, such as spec-
trum surveillance, electronic surveillance, electronic warfare,
and network control and management [1]. It improves radio
spectrum utilisation and enables intelligent decision-making for
context-aware autonomous wireless spectrum monitoring sys-
tems [2]. However, most of the existing MC methods are fo-
cussed on single-input single-output (SISO) scenarios, which
cannot be directly applied when multiple transmit antennas are
equipped at the transceivers [3]. Therefore, it is crucial to re-
search the performance of the MC method for MIMO commu-
nication systems.

Traditional MC approaches for the SISO systems discussed
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fast modulation classification and blind modulation classifica-
tion (BMC). By contrast, the FB approaches cannot obtain the
optimal result, but they have lower computational complexity
and do not require prior information. The FB methods usually
include two steps: feature extraction and classifier design. The
higher-order statistics, instantaneous statistics, and other fea-
tures are calculated in the feature extraction. Then the popular
classification methods, such as decision tree [7], support vector
machine [8] [9], and artificial neural network (ANN) [10] [11]
are adopted as the classifiers.

With the rapid rise of artificial intelligence and the emerg-
ing requirements of intelligent wireless communication, deep
learning-based approaches are now becoming widely studied
and used in different aspects of wireless communication, such
as the transceiver design at the physical layer [12] and BMC
problems [13] [14] [15] [16] [17] [18]. As for BMC in SISO
scenarios, the raw in-phase and quadrature phase (IQ) data or
the time-domain amplitude and phase data can be directly used
as the input of the deep learning neural network. More specif-

in the literature can be classified into two main categaries: likelihood;e a1y the authors in [13] presented convolutional long short-
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nt characteristics used in signal waveform

br automatic digital modulation recognition is

bd using higher-order statistical moments (HOM)
la features set. A multilayer feed-forward neural
tion learning algorithm is proposed as a classifier.
rent M-ary shift keying modulation schemes and
nal information. Pre-processing and features
analysis is used to reduce the network complexity
. The proposed algorithm is evaluated through
ability. The proposed classifier is shown to be

me with high accuracy over wide signal-to-noise
Gaussian noise (AWGN) and different fading
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Classify ECG Signals
Using Long Short-Term
Memory Networks

Classify heartbeat electrocardiogram
data using deep learning and signal
processing.
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Label QRS Complexes and

R Peaks of ECG Signals
Using Deep Learning...

Use Signal Labeler to locate and
label QRS complexes and R peaks
of ECG signals.
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4
Waveform Segmentation
Using Deep Learning

Segment human electrocardiogram
signals using time-frequency
analysis and deep learning.

4
Label Spoken Words in
Audio Signals Using
External API

Use Signal Labeler to label spoken
words in an audio signal.
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Iterative Approach for
Creating Labeled Signal
Sets with Reduced Huma...

Use deep learning to decrease the
human effort required to label
signals
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Labeling Radar Signals
with Signal Labeler

Label the time and frequency
features of pulse radar signals with
added noise.
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Understanding tradeoffs for model selection
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Understanding tradeoffs for model selection
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| AB BXIPO &\ MathWorks 16



There are three ways to build Al models in MATLAB

imagelInputLayer ([2 spf 1], 'i
'Input Layer')

4
convolutionZ2dLayer (filterSizel
'Name', 'CNN1’) g

batchNormalizatiOnLayer('Namé
relulayer ('Name', 'ReLUl'")
maxPoolingZdLayer (poolSize, '

WW/

fitcauto/fitrauto

Writing code
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There are three ways to build Al models in MATLAB
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imagelInputLayer ([2 spf 1], 'i :
'Input Layer') ‘ -gmm 8=
{ — _—
convolutionZ2dLayer (filterSizel g B
'Name', "CNN1") g . TEERE- =
| & e,
batchNormalizationLayer('Namé o e s
relulayer ('Name', 'ReLUl'")
maxPoolingZdLayer (poolSize, '
fitcauto/fitrauto
Writing code Interactively Design Models with

Apps
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There are three ways to build Al models in MATLAB

imagelInputLayer ([2 spf 1], 'li i o -
'Input Layer') ‘ '. A= o= o
{ CE E - o -
convolution2dlayer (filterSizet & - B = B Inception-v3 ) [ ResNet-101 VGG-16 | nception-
'Name', 'CNN1”) i . P e - :\ ~ :\ :: '[ ResNet-v2
[ _ ResNet-18 | [ GoogleNet | [ DenseNet-201 \7/
batchNormaliZationLayeJ:‘('Namél B “oqmeazenat ) ( memet ) ( reaness ) [ VveG19
relulLayer ('Name', 'ReLUl') A ——— PN
maxPoolingZdLayer (poolSize, ',
fitcauto/fitrauto
Writing code Interactively Design Models with Use Transfer Learning
Apps for Deep Learning
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Iterate to find the best model with Experiment Manager App
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Iterate to find the best model with Experiment Manager App
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Iterate to find the best model with Experiment Manager App
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Iterate to find the best model with Experiment Manager App
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Iterate to find the best model with Experiment Manager App
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Selecting the Right Model : Understanding Tradeoffs
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Selecting the Right Model : Understanding Tradeoffs
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Continuous Wavelet Transform is used to extract the Time-
Frequency maps
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Continuous Wavelet Transform is used to extract the Time-
Frequency maps

BPSK 16QAM
05
| . | g 8" '
*One line of code for generating wavelet time- s £ 0 |
frequency visualization in MATLAB. Works for any = C
signal
>> cwt (1nputSignal) 0 5
TIITIE: [rrt5]- Time (ms)
BPSK 16QAM
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Continuous Wavelet Transform is used to extract the Time-
Frequency maps

BPSK 16QAM
05

| . | g 8" '
*One line of code for generating wavelet time- s £ 0 |
frequency visualization in MATLAB. Works for any = C
signal

>> cwt (1nputSignal) 0 3
TIITIE: [rrt5]- Time (ms)

BPSK 16QAM

Localizes sharp transients and slowly varying
oscillations simultaneously
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Continuous Wavelet Transform is used to extract the Time-
Frequency maps

BPSK 16QAM
05

| . | g 8" '
*One line of code for generating wavelet time- s £ 0 |
frequency visualization in MATLAB. Works for any = C
signal

>> cwt (1nputSignal) 0 3
TIITIE: [m5]- Time (ms)

. . . BPSK 16QAM
Localizes sharp transients and slowly varying

oscillations simultaneously

« Works with complex data
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Using time-frequency maps as inputs to a pretrained CNN
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Using time-frequency maps as inputs to a pretrained CNN
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Using time-frequency maps as inputs to a pretrained CNN
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Transfer Learning with Deep Network Designer App

4\ Deep Network Designer Start Page - O X

MATLAB

Getting Started Compare Pretrained Networks Transfer Learning

v General

Blank Network From Workspace

v Pretrained Networks
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GooglLeNet ResNet-50 EfficientNet-b0 DarkNet-53 DarkNet-19
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4| Training Progress (05-Mar-2021 12:18:33)
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Test Deep Network

Confusion Matrix [overall accuacy: 0.85765)
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Testing network with

connected hardware

z Modulation Classification with Deep Learning
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Testing network with connected hardware

z Modulation Classification with Deep Learning - O
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Testing network with connected hardware

z Modulation Classification with Deep Learning - (.
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Testing network with connected hardware

z Modulation Classification with Deep Learning - O
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Receiver Radio [ ADALM-PLUTO v | Live Demo Transmitted Waveform _
# Frames per Modulation 25 off @ on Predicted Modulation _
Received Waveform (IQ vs. time)
] I ) I 1 " |
0.02 | | ) " [ . |
@
el
2 o '
[=3
<
-0.02 ' ‘ | [ [
1 1 1 1
100 200 300 400 500 600 700 800 900 1000
Time
: Estimated Modulation 2, @ Q ¢}
08
£ os}
o
8
S04}
o
0.2}
0 1 1 1 1 1 1 1
16QAM B-FM BPSK CPFSK DSB-AM GFSK PAM4 SSBAM
Waveform tvpe
Status: Classifying Number of Frames Processed: 58

4\ MathWorks 24




Al-assisted system design

Data Preparation

'|||'|‘|' Data cleansing and
preparation

@ Human insight

Simulation-
generated data

Al Modeling

@ Model design and
tuning

== Hardware
e accelerated training

‘};’ Interoperability

Deployment

. Embedded devices

% Enterprise systems

¢ Edge, cloud,
desktop

&\ MathWorks

25



Al-assisted system design

Data Preparation

'|||'|‘|' Data cleansing and
preparation

@ Human insight

Simulation-
generated data

Al Modeling

@ Model design and
tuning

== Hardware
e accelerated training

‘};’ Interoperability

Deployment

. Embedded devices

% Enterprise systems

¢ Edge, cloud,
desktop

&\ MathWorks

25



Deep Learning can be used in each step of the Al workflow
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Deep Learning can be used in each step of the Al workflow

Manually
Correct
Neural
Inspect Network
Auto
Label

Labeling assistance
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Deep Learning can be used in each step of the Al workflow

Manually

Correct
Neural
Inspect Network
Auto

Label
Labeling assistance
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Deep Learning can be used in each step of the Al workflow

Manually
Correct Real Signal > Predict
»| Discriminator ——  Labels
Label >
/ \‘ e (Real/Gen)
Neural
Inspect Network Generator | _enerated
Noise ————» Fake Signal
Auto
Label

Labeling assistance
classifySound (YAMNet) ,h GoogLeNet,
fitcecoc (ResNetl8)

AB BXIPO
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Deep Learning can be used in each step of the Al workflow

Manually
Correct Real Signa| > Predict
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/ \4 Labels (Real/Gen)
Neural
Inspect Nef\:jvroa;k Generator | Generated
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Label
Labeling assistance Synthetic Data Generation
classifySound (YAMNet) ,h GoogLeNet, Generative Adversarial Networks
fitcecoc (ResNetl8) (GANSs)
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Deep Learning can be used in each step of the Al workflow
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Deep Learning can be used in each step of the Al workflow

features = vggFeatures(audioln,fs);)

Feature Extraction
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Deep Learning can be used in each step of the Al workflow

features = vggFeatures(audioln,fs);)
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Deep Learning can be used in each step of the Al workflow

features = vggFeatures(audioln,fs);)

Feature Extraction

vggFeatures, waveletScattering
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Deep Learning can be used in each step of the Al workflow

features = vggFeatures(audioln,fs);)
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Deep Learning can be used in each step of the Al workflow

features = vggFeatures(audioln,fs);)
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Deep Learning can be used in each step of the Al workflow

features = vggFeatures(audioln,fs);)

Feature Extraction

vggFeatures, waveletScattering
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Deploy to any processor with best-in-class performance
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Deploy to any processor with best-in-class performance

Preprocessing, Feature
Extraction, Al Model
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Deploy to any processor with best-in-class performance
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Deploy to any processor with best-in-class performance
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Deploy to any processor with best-in-class performance
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Deploying complete Al algorithms to embedded processors, GPUs
and FPGAs
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Modulation Classification
Using Wavelet Analysis on
NVIDIA Jetson

Generate and deploy a CUDA®
executable that performs modulation
classification using features
extracted by the continuous wavelet
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Deploying complete Al algorithms to embedded processors, GPUs
and FPGAs

BPSK 160AM PAMA GFSK

O58-AM S58-AM

Continuous Wavelet Deep Networks
Transform

CPrsK 8-FM
‘1

Modulation Classification
Using Wavelet Analysis on
NVIDIA Jetson

Generate and deploy a CUDA®
executable that performs modulation
classification using features
extracted by the continuous wavelet




Deploying complete Al algorithms to embedded processors, GPUs
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Deploying complete Al algorithms to embedded processors, GPUs
and FPGAs

BPSK 160AM PAMA GFSK
i g
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'i

Modulation Classification
Using Wavelet Analysis on
NVIDIA Jetson

Generate and deploy a CUDA®
executable that performs modulation
classification using features
extracted by the continuous wavelet

Continuous Wavelet Deep Networks
Transform

NVIDIA.
CUDA

‘ @2 C/IC++
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Deploying complete Al algorithms to embedded processors, GPUs
and FPGAs

Predicted Labels

O58-AM S58-AM

CPrsK 8-FM
I l
‘1

X
Madulation Classiication Deploy Signal Speech .C_ommand Cla.ssify ECG Signals
Using Wavelet Analysis on Segmentation Deep . Recognl_tlon (:‘,ode Using DAG Network
NVIDIA Jetson Network on Raspberry Pi Generation with Intel MK... Deployed To FPGA
Generate and deploy a CUDA® Generate 3 MEX function and 3 Deploy feature extraction and a Classify human electrocardiogram
executable that performs modulation standalone executable to perform convolutional neural network (CNN) (ECG) signals by deploying a trained
classification using features waveform segmentation on a for speech command recognition on directed acyclic graph (DAG)
extracted by the continuous wavelet Raspberry Pi™. Intel® processors. To generate the network.
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MATLAB supports the entire Al-driven system design
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