
Simulink Report Generator

Simulink Design Verifier

Requirement Based
Functional Test Cases

Test Cases identified
using Formal Methods

Modelling Standards Simulink Check

Simulink Test

Design constraints
(Equivalence classes, Boundary
Values, Derived Requirements)

Simulink Coverage

SWRS + SADD

MODEL

Req. Baseline

REQUIREMENTS

• Software Development Plan (SDP)
• Modelling and Design Standards

• SW Requirements Specification (SRS)
• Software Logical Model
• Req. Traceability Matrix

• SW Design Document (SDD)
• Software Architectural Design
• Software Behaviour
• Internal Interface Design

• Software Verification Report (SVR)
• Autocode input model review
• Test Traceability Matrix
• Model Conformance Report
• Model Coverage Report

…

Simulink Requirements

+

M
o

d
el

 C
o

ve
ra

ge
 A

n
al

ys
is

Simulation in the Loop Functional Testing

Te
st

 C
as

e
 T

ra
ce

ab
ili

ty

Design Error Detection and Property Proving Design Traceability

Design, Source Code and Test Case Traceability

SOURCE CODE

• Software Development Plan (SDP)
• Coding standards
• Test Traceability Matrix
• Tool Validation Documentation

• Software Unit Integration Test Plan
(SUITP)

• Software Validation Report (SVR)
• Code Generation Report
• Software Unit Test Report
• Software Code Traceability Matrix
• Code Coverage Report
• Robustness Report
• Independent SW Validation Report
• Review and Inspection Reports

…

Embedded Coder

Simulink Code Inspector

Polyspace Bug Finder

Polyspace Code Prover

Coding Standards

Simulink Test

A
u

to
m

at
ic

 C
o

d
e

 G
e

n
e

ra
ti

o
n

Automatic Code Inspection -
structure and traceability

Source Code Traceability

Source Code Traceability

So
ft

w
ar

e
V

er
if

ic
at

io
n

 T
es

t
C

as
e

 T
ra

ce
ab

ili
ty

Prove Absence of RT Errors

Software in the Loop (SIL) Unit Testing

Simulink Requirements

Model Conformance Checks

Prepared by: Ossi Saarela, MathWorks
Ossi.Saarela@MathWorks.com

+1-508-647-1618
March 2018

NASA NPR 7150.2 Compliant Flight Software Development Workflow

NPR 7150.2 – 3.8 Automatic Generation of Software Source Code

3.8.1. The project manager shall define the approach to the automatic generation of

software source code including: [SWE-146]

a. Validation and verification of auto-generation tools.

b. Configuration management of the auto-generation tools and associated data.

c. Identification of the allowable scope for the use of auto-generated software.

d. Verification and validation of auto-generated source code.

e. Monitoring the actual use of auto-generated source code compared to the planned use.

f. Policies and procedures for making manual changes to auto-generated source code.

g. Configuration management of the input to the auto-generation tool, the output of the

auto-generation tool, and modifications made to the output of the auto-generation tools.

Reuse of Previous Test Cases
Addition of Real-Time specific Test Cases

Simulink Report Generator

Effort Distribution in Traditional Development Workflows

Unit Design &
Verification Unit ValidationSpecifications Implementation

C, C++, HDLRB, SSS TS, SWADD Testing

Effort Distribution in Model-Based Design Workflows

Specifications

Unit Design &
Verification

Implementation

Unit Validation

C, C++, HDL

RB, SSS

TS, SWADD

Testing

Automatic Test
Case Generation

Coder Settings

Validation Objectives Settings

Testing Environment Settings

Code Conformance (MISRA,…)

Simulation Cases Results

EXECUTABLE OBJECT

CODE

Compiler

Processor and Hardware in the Loop (PIL and HIL) Unit Testing

Simulink Coverage

Code Coverage

SIL Test Cases Results

Coverage Metrics

Doc Templates Scripts

Testing Environment Settings

Doc Templates Scripts

NPR 7150.2 – 4.1 Software Requirements

4.1.2.1 The project manager shall establish, capture, record, approve, and maintain

software requirements, including the software quality requirements, as part of the

technical specification. [SWE-050].

4.1.2.3 The project manager shall perform, record, and maintain bidirectional traceability

between the software requirement and the higher-level requirement. [SWE-052]

4.1.3.1 The project manager shall track and manage changes to the software

requirements. [SWE-053]

NPR 7150.2 – 4.4 Software Implementation

4.4.2 The project manager shall implement the

software design into software code. [SWE-060]

NPR 7150.2 – 4.4 Software Implementation

4.4.4 The project manager shall verify the software code by using the

results from static analysis tool(s). [SWE-135]

NPR 7150.2 – 4.4 Software Implementation

4.4.7 The project manager shall perform, record, and maintain bidirectional

traceability from software design to the software code. [SWE-064]

NPR 7150.2 – 4.4 Software Implementation

4.4.5 The project manager shall unit test the software

code per the plans for software testing. [SWE-062]
NPR 7150.2 – 4.4 Software Implementation

4.4.6 The project manager shall provide a software

version description for each software release. [SWE-063]

NPR 7150.2 – 4.4 Software Implementation

4.4.8 The project manager shall validate and accredit software tool(s) required to

develop or maintain software. [SWE-136]

NPR 7150.2 – 4.5 Software Testing

4.5.7 The project manager shall use validated and accredited software

models, simulations, and analysis tools required to perform qualification of

flight software or flight equipment. [SWE-070]

NPR 7150.2 – 4.5 Software Testing

4.5.4 The project manager shall verify the requirement to the implementation of

each software requirement. [SWE-067]

4.5.8 The project manager shall update software test plan(s) and software test

procedure(s) to be consistent with software requirements. [SWE-071]

4.5.9 The project manager shall provide and maintain bidirectional traceability

from the software test procedures to the software requirements. [SWE-072]

NPR 7150.2 – 4.5 Software Testing

4.5.10 The project manager shall validate the software system on the targeted

platform or high-fidelity simulation. [SWE-073]

NPR 7150.2 – 5.3 Software Peer Reviews and Inspections

5.3.2 The project manager shall perform and report the results of

software peer reviews or software inspections for: [SWE-087]

d. Software code as defined in the software and or project plans.

NPR 7150.2 – 3.16 Software Security

3.16.6 The project manager shall ensure that the space flight software systems are

assessed for possible security vulnerabilities and weaknesses. [SWE-158]

NPR 7150.2 – 4.4 Software Implementation

4.4.3 The project manager shall select, adhere to, and verify software

coding methods, standards, and/or criteria. [SWE-061]

NPR 7150.2 – 4.1 Software Requirements

4.1.3.3 The project manager shall perform requirements validation to

ensure that the software will perform as intended in the customer

environment. [SWE-055]

NPR 7150.2 – 4.5 Software Testing

4.5.2 The project manager shall establish and maintain:

[SWE-065]

a. Software test plan(s).

b. Software test procedure(s).

c. Software test report(s).

4.5.5 The project manager shall evaluate test results and

record the evaluation. [SWE-068]

NPR 7150.2 – 4.3 Software Design

4.3.4 The project manager shall perform, record, and maintain bidirectional traceability

between the following: [SWE-059]

a. Software requirements and software architecture.

b. Software architecture and software design.

c. Software requirements and software design.

NPR 7150.2 – 4.3 Software Design

4.3.2 The project manager shall develop, record, and

maintain the software design. [SWE-056]

4.3.3 The project manager shall develop, record, and

maintain a design based on the software architectural

design that describes the lower-level units so that they can

be coded, compiled, and tested. [SWE-058]

NPR 7150.2 – 4.1 Software Requirements

4.1.1 The requirements phase is one of the most important phases of software engineering. Studies show that the top

problems in the software industry are due to poor requirements elicitation, inadequate requirements specification, and

inadequate management of changes to requirements. Requirements provide the foundation for the entire life-cycle, as well

as for the software product. Requirements also provide a basis for planning, estimating, and monitoring. Requirements are

based on customer, user, and other stakeholder needs and design and development constraints. The development of

requirements includes elicitation, analysis, documentation, verification, and validation. Ongoing customer validation of the

requirements to ensure the end products meet customer needs is an important part of the life-cycle process. This can be

accomplished via rapid prototyping and customer-involved reviews of iterative and final software requirements.

NPR 7150.2 – 4.3 Software Design

4.3.1 Software design is the process of defining the software architecture, components, modules, interfaces, and data for a software system

to satisfy specified requirements. The software architecture is the fundamental organization of a system embodied in its components, their

relationships to each other and to the environment, and the principles guiding its design and evolution. The software architectural design is

concerned with creating a strong overall structure for software entities that fulfill allocated system and software-level requirements.

Typical views captured in an architectural design include the decomposition of the software subsystem into design entities, computer

software configuration items, definitions of external and internal interfaces, dependency relationships among entities and system

resources, and finite state machines. The design should be further refined into lower-level entities that permit the implementation by

coding in a programming language. Typical attributes that are documented for lower-level entities include: identifier, type, purpose,

function, constraints, subordinates, dependencies, interface, resources, processing, and data. Rigorous specification languages, graphical

representations, and related tools have been developed to support the evaluation of critical properties at the design level. Projects are

encouraged to take advantage of these improved design techniques to prevent and eliminate errors as early in the life cycle as possible.

NPR 7150.2 – 4.4 Software Implementation

4.4.1 Software implementation consists of implementing the requirements and design

into code, data, and records. Software implementation also consists of following

coding methods and standards. Unit testing is also usually a part of software

implementation (unit testing can also be conducted during the testing phase).

NPR 7150.2 – 4.5 Software Testing

4.5.1 The purpose of testing is to verify the software

functionality and remove defects. Testing verifies the code

against the requirements and the design to ensure that the

requirements are implemented. Testing also identifies

problems and defects that are corrected and tracked to closure

before product delivery. Testing also validates that the

software operates appropriately in the intended environment.

Please note for Class A software, additional software test and

integration requirements exist in NPR 8705.2 beyond those

listed below.

NPR 7150.2 – 4.5 Software Operations, Maintenance, and Retirement

4.6.3 The project manager shall complete and deliver the software product to

the customer with appropriate records, including as-built records, to support the

operations and maintenance phase of the software's life cycle. [SWE-077]

