
Analog Dialogue 49-09, September 2015 1

Four Quick Steps to Production:
Using Model-Based Design for
Software-Defined Radio
Part 1—the Analog Devices/Xilinx SDR Rapid Prototyping Platform:
Its Capabilities, Benefits, and Tools

By Di Pu, Andrei Cozma, and Tom Hill

Abstract

There is a significant gap between the concept of a wireless
system and the realization of that working design. Bridging
this gap typically involves teams of engineers with a variety of
different skill sets (such as RF, SW, DSP, HDL, and embedded
Linux®), and in many cases projects get derailed early in the
development stage because of the difficulty in coordinating
the efforts of these varied design entities.

In this four part article, we will examine the advances in
platforms and tools that allow developers to quickly simu-
late and prototype wireless systems while establishing and
maintaining a deployable path to production. As a real-world
example of the process, we will prototype a wireless SDR
platform that receives and decodes automatic dependent sur-
veillance broadcast (ADS-B) signals to allow us to detect and
report the position, altitude, and velocity of the commercial
aircraft flying in our vicinity. The resources required in this
case are MATLAB® and Simulink and the skills to integrate
and embed hardware/software. The hardware platform will
be the Analog Devices/Xilinx® software-defined radio (SDR)
prototyping system. Using MATLAB and Simulink® the
following tasks will be performed:

•	 Design of signal processing algorithms used to decode 	
	 ADS-B messages

•	 Simulation of the RF transceiver receiving ADS-B signals
•	 Generation of C and HDL code
•	 Verification of the HDL code with recorded and live data
	 on the target transceiver and FPGA

The final result will be a working RF SDR design running on
production-worthy hardware, which we will take to a local
airport and verify its performance and functionality.

The first part of this four part article will discuss the
Analog Devices/Xilinx SDR prototyping system, its
capabilities and benefits, and a brief description of the tool
flow. The second part will review the automatic dependent
surveillance broadcast (ADS-B) signals and explain how to
decode their information in MATLAB and Simulink in simu-
lation. The third part will describe and showcase how to use
hardware in the loop (HIL) and capturing signals with the
target transceiver, but still doing the signal processing on the
host in Simulink for verification. The fourth part will show
how to take the algorithm developed in part 2, verified in part
3, and use HDL Coder and Embedded Coder from MathWorks
to generate code and deploy it in the production hardware,
and finally we’ll operate the platform with real-world ADS-B
signals at an airport.

analog.com/analogdialogue

Introduction

With the exponential growth in the ways and means by which
people need to communicate, modifying radio devices easily
and cost effectively has become business critical. Based on
this requirement, software-defined radio technology has
been widely employed recently since it brings the flexibility,
cost efficiency, and power to drive communications forward.1
The purpose of an SDR system is to implement as much as
possible of the modulation/demodulation and data process-
ing algorithms in software and reprogrammable logic so that
the communication system can be easily reconfigured just by
updating the software and the reprogrammable logic and not
making any changes to the hardware platform.
With the advent of system on chip (SoC) devices like the Xilinx
Zynq.® All Programmable SoC that combine the versatility of
a CPU and the processing power of an FPGA, designers have
the means to consolidate the data processing functions of an
SDR system into a single device while integrating additional
processing tasks. Processing intensive tasks like the data
modulation/demodulation algorithms are offloaded to the
programmable logic of the device while tasks like data decod-
ing and rendering, system monitoring and diagnosis and user
interface are deferred to the processing unit.

At the same time, prototyping wireless systems has been a dis-
cussion topic for decades but has only in recent years evolved
into a complete design flow for FPGAs—from model creation
to complete implementation—due to the evolution of the mod-
eling and simulation tools like MATLAB and Simulink from
MathWorks. Prototyping wireless systems is transforming the
way engineers and scientists work by moving design tasks
from the lab and field to the desktop.2 Now the entire wireless
system, such as an SDR system, can be modeled, allowing
the engineer to observe the system’s behavior and to tune it
before it is actually implemented in the field. This has several
benefits, such as accelerating system integration and reducing
the dependency on equipment availability. Moreover, once the
Simulink model for the SDR system is complete, C and HDL
code can be generated automatically for implementation on
Zynq SoCs, saving time and avoiding the introduction of man-
ually coded errors. The risk is further reduced by linking the
system model to a rapid prototyping environment that allows
the SDR system to be exercised under real-world conditions.

This first part of the four part article series will discuss the
Analog Devices/Xilinx SDR rapid prototyping system, its
capabilities and benefits, and a brief description of the tool
flow. The article showcases how Analog Devices RF IC tech-
nology and reference design hardware and software require a
reduced design skill subset, thus enabling customers to miti-
gate risk and shorten their time to market.

http://www.analog.com/library/analogDialogue/index.html

Analog Dialogue 49-09, September 20152

challenging signal processing applications. Five high through-
put AMBA®-4 AXI high speed interconnects tightly couple the
programmable logic to the processing system with the equiva-
lent of more than 3,000 pins of effective bandwidth.4

AD9361 Agile Wideband RF Transceiver IC for SDR

In recent years, Analog Devices has brought to market rev-
olutionary SDR products to support increasingly evolving
SDR requirements and system architectures. Some of the
most important Analog Devices products in this field are
the AD9361/AD9364 integrated RF agile transceivers. The
AD9361 (2 × 2)5 and AD9364 (1 × 1)6 are high performance,
highly integrated RF transceiver ICs intended for use in SDR
architectures in applications such as wireless communications
infrastructure, defense electronics systems, RF test equipment
and instrumentation, and general software-defined radio plat-
forms. The devices combine an RF front end with a flexible,
mixed-signal baseband section and integrated frequency syn-
thesizers, simplifying design-in by providing a configurable
digital interface to a processor or FPGA. The chips operate
in the 70 MHz to 6 GHz range, covering most licensed and
unlicensed bands, and support channel bandwidths from less
than 200 kHz to 56 MHz by changing the sample rate, digital
filters, and decimation, all programmable within the AD9361
and AD9364 devices.7 Figure 2 shows the block diagram of a
AD9361 device.

Zynq for SDR

Advanced SDR systems are required to execute a combination
of data processing, communication, and user interface tasks
that have different processing bandwidth requirements and
real-time constraints. The hardware platform chosen to imple-
ment such a system must be robust and scalable at the same
time allowing for future system improvements and expansion.
Xilinx Zynq-7000 All Programmable SoCs fulfill these require-
ments by supplying a high performance processing system
combined with programmable logic as shown in Figure 1.3
The combination of programmable logic and processing system
delivers superior parallel processing power, real-time perfor-
mance, fast computational speeds, and connectivity versatility.

The processing system side of the Zynq SoC consists of a dual-
core ARM® Cortex®-A9 processor combined with a NEON
coprocessor and floating-point extensions to accelerate software
execution. Embedded Linux or real-time operating systems can
be deployed on the dual-core ARM processor to fully benefit
from the system’s capabilities. The processor is self-contained
and can be used without the need to configure the program-
mable logic, which is a critical element for software developers
who will want to start developing code in parallel to hardware
developers who will design the FPGA fabric.

On the programmable logic side, the device has up to 444,000
logic cells and 2,200 DSP slices that supply massive processing
bandwidth, allowing the Zynq device to tackle a variety of

2×
SPI

AMBA® Interconnect

AMBA Interconnect Security
AES, SHA, RSA

General-Purpose
AXI Ports

Programmable Logic
(System Gates, DSP, RAM)

EMIO
High Performance

AXI Ports

PCIe GEN2
1 Lane to 8 Lanes

XADC
2× ADC, Mux,

Thermal Sensor

Multigigabit TransceiversMultistandard I/Os (3.3 V and High Speed 1.8 V)

ACP

AMBA Interconnect

NEON® DSP/FPU Engine

ARM® CoreSight® Multicore Debug and Trace

NEON DSP/FPU Engine

512 kB L2 Cache
General Interrupt

Controller
Configuration Timers DMA

Watchdog
Timer

Snoop
Control

Unit

256 kB
On-Chip
Memory

Cortex®-A9 MPCORE
32 kB/32 kB I/D Caches

Cortex-A9 MPCORE
32 kB/32 kB I/D Caches

AMBA Interconnect

Flash Controller
NOR, NAND, SRAM, QUAD SPI

Processing System

Multiport DRAM Controller
DDR3, DDR3L, DDR2

2×
I2C
2×

CAN
2×

UART

P
ro

ce
ss

o
r

I/
O

 M
ux

GPIO

2× SDIO
with DMA
2× USB

with DMA
2× GigE

with DMA

Figure 1. Xilinx Zynq SoC block diagram.

www.analog.com/ad9361
www.analog.com/ad9364

Analog Dialogue 49-09, September 2015 3

In order to help customers shorten time to market and overall development effort, Analog Devices has gone a step further by
providing SDR solutions within a complete ecosystem of seamless FPGA connectivity, enabling a rapid prototyping and develop-
ment environment for complete radio system design. The AD-FMCOMMSx-EBZ rapid development and prototyping boards are
a family of high speed analog FMC modules, incorporating AD9361 or AD9364 agile RF transceiver ICs or a discrete signal chain
that seamlessly connects to the Xilinx FPGA development platform ecosystem. These boards are fully customizable by software
without any hardware changes and come with downloadable Linux drivers and bare metal software drivers, schematics, board
layout, and design aid reference materials, all contained on their respective Analog Devices wiki sites. Table 1 summarizes the
features of the different FMCOMMSx platforms.

Table 1. FMCOMMSx Platforms

Platform Features

AD-FMCOMMS5-EBZ Integrating two AD9361 2 × 2 agile transceiver ICs, this SDR rapid prototyping board provides full synchroni-
zation capability for four receiver channels and four transmitter channels, enabling any subset of a 4 × 4 MIMO
system to be created. Wideband 70 MHz to 6 GHz and 2.4 GHz tuned ports are accommodated. AD-FMCOM-
MS5-EBZ resource wiki page: http://wiki.analog.com/resources/eval/user-guides/ad-fmcomms5-ebz

AD-FMCOMMS4-EBZ Integrating the AD9364 agile RF transceiver IC, this 1 × 1 SDR rapid prototyping board can be software config-
ured for highest RF performance in the 2400 MHz to 2500 MHz region, or can be software configured to operate
over the AD9364’s complete RF tuning range of 70 MHz to 6 GHz for system prototyping and development
purposes. AD-FMCOMMS4-EBZ resource wiki page: http://wiki.analog.com/resources/eval/user-guides/ad-
fmcomms4-ebz

AD-FMCOMMS3-EBZ Integrating the AD9361 agile RF transceiver IC, this 2 × 2 version of SDR rapid prototyping board supports the
AD9361’s full RF tuning range of 70 MHz to 6 GHz. This kit is ideal for the wireless communications SDR system
architect seeking a unified development platform with wide tuning capabilities. AD-FMCOMMS3-EBZ resource
wiki page: http://wiki.analog.com/resources/eval/user-guides/ad-fmcomms3-ebz

AD-FMCOMMS2-EBZ Integrating the AD9361 agile RF transceiver IC, this 2 × 2 SDR rapid prototyping board is tuned for highest RF
performance in the 2400 MHz to 2500 MHz region. This kit is ideal for the RF engineer seeking optimized system
performance meeting AD9361 data sheet specifications within this defined range of RF spectrum. AD-FMCOM-
MS2-EBZ resource wiki page: http://wiki.analog.com/resources/eval/user-guides/ad-fmcomms2-ebz

Figure 2. AD9361 block diagram.

Baseband

GPO

Rx Channel 1

Rx Channel 2

Tx Channel 1

Tx Channel 2

SPI

Reset

CTRL

DIV

Calibration and
Correction

70 MHz to 6 GHz

C
h1

 I/
Q

C
h2

 I/
Q

C
h1

 I/
Q

C
h2

 I/
Q

Temperature
Sensor

70 MHz to 6 GHz

DIV DIV

Rx 61.44 MSPS
Enable State

Machine (ENSM)

AD9361

GND

Automatic
Gain
Control

Manual
Slow
Fast

11
.2

 M
SP

S
to

 6
40

 M
SP

S

I

RF Channel Bandwidth
200 kHz to 56 MHz (I/Q)

÷1
÷2
÷3

÷1
÷2

÷1
÷2

÷1
÷2
÷4

HB2 HB1HB3

HB2 HB1HB3

Q

Phase
Splitter

Rx Decimation
Digital Filtering and Equalization

RF Channel Bandwidth Tx Interpolation
Digital Filtering and Equalization200 kHz to 56 MHz (I/Q)

1×
2×
3×

1×
2×

1×
2×

1×
2×
4×

I

Q

HB1HB2HB3

32
0

M
S

P
S

HB1HB2HB3

In
p

ut
 M

ux

AUX DAC

AUX ADC

O
ut

p
ut

 M
ux

C
M

O
S

/L
V

D
S

 In
te

rf
ac

e

Tx 61.44 MSPS

Loop-
back

PN and
BIST

715 MHz to 1430 MHz
DCXO

VDD_GPO

VDD_INTERFACE

VDD_MAIN

RX2A_P,
RX2A_N
RX1A_P,
RX1A_N
RX2B_P,
RX2B_N
RX1B_P,
RX1B_N
RX2C_P,
RX2C_N
RX1C_P,
RX1C_N

TXMON2

TXMON1

RXLO

TXLO

SPI

CTRL

AUXDAC1
AUXDAC2

TX2A_P,
TX2A_N
TX1A_P,
TX1A_N
TX2B_P,
TX2B_N
TX1B_P,
TX1B_N

AUXADC

XTALP

XTALN

Radio
Switching

RESETB

P0_[D11:D0]/
TX_[D5:D0]

P1_[D11:D0]/
RX_[D5:D0]

GND

1.8 V to 3.3 V

1.2 V to 2.5 V

1.3 V

TxA

TxB

Tx
Mon

RxA

RxB

RxC

12-Bit

Dual
10-Bit

Tx

Rx

DIV

Tx

Rx

Phase
Splitter

GainTIA FIR

TIA

LNA

FIRGain

ATTN

FIR

FIR

ADC

ADC

TxRx

http://wiki.analog.com/resources/eval/user-guides/ad-fmcomms5-ebz
http://wiki.analog.com/resources/eval/user-guides/ad-fmcomms4-ebz
http://wiki.analog.com/resources/eval/user-guides/ad-fmcomms4-ebz
http://wiki.analog.com/resources/eval/user-guides/ad-fmcomms3-ebz
http://wiki.analog.com/resources/eval/user-guides/ad-fmcomms2-ebz

Analog Dialogue 49-09, September 20154

Zynq SDR Rapid Prototyping Platform

Reference Design

Together with the FMCOMMSx platforms, Analog Devices
provides a complete Vivado framework, with a Linux and
bare metal software infrastructure that can be used both for
prototyping purposes as well as a part of the final production
system. Figure 3 shows the Analog Devices Zynq Infrastruc-
ture to support the FMCOMMSx boards.

This high level diagram shows how the ADI reference design is
partitioned on a Xilinx Zynq SoC. An HDMI output is used to
display the Linux interface on a monitor while a keyboard and
mouse can be connected to the system on a USB 2.0 port. The
ARM Cortex-A9 processing system runs Ubuntu Linux pro-
vided by Analog Devices. This includes the Linux IIO drivers
needed to interface with the Analog Devices FMCOMMS hard-
ware, the IIO Oscilloscope (Scope)8 user space application for
monitoring and control, a libiio server9 that allows real-time
data acquisition and system control over TCP together with
clients running on a remote computer, and optional user appli-
cations that incorporate C code generated by the Embedded
Coder for the controller’s Simulink model.

Software Infrastructure

All ADI Linux drivers are based on the Linux Industrial I/O
(IIO) subsystem, which is now included in all mainline Linux
kernels. The IIO Scope is an open-source Linux application
developed by Analog Devices that runs on the dual ARM
Cortex-A9 cores inside the Xilinx Zynq and has the ability
to display real-time data acquired from any Analog Devices
FMC card connected to the Xilinx Zynq platform. The data
can be displayed either as a time domain, frequency domain,

or constellation plot. Different popular file formats like comma
separated values or .mat MATLAB data files are supported
to save the captured data for further analysis. The IIO Scope
provides a graphical user interface for changing or reading
back the configuration of the Analog Devices FMC cards. The
libiio server allows real-time data acquisition and system con-
trol over transmission control protocol (TCP) together with
clients running on a remote computer.10 The server runs on
an embedded target under Linux and manages real-time data
exchange over TCP between the target and a remote client.
This library abstracts the low level details of the hardware, and
provides a simple yet complete programming interface that
can be used for advanced projects. Its modular architecture,
well designed API, and built-in network capabilities allow the
users to create applications that will run on the system not
only where the IIO devices are connected, but also remotely
through the network. At first targeted at Linux, it can now be
used under Windows as well by using the remote back end of
the library. Written in C and licensed under the LGPL, it fea-
tures bindings for C#, Python, and MATLAB. A MathWorks
IIO client11 is available as a system object to be integrated in
native MATLAB and Simulink applications. It is designed to
exchange data over Ethernet with an ADI hardware system
connected to a FPGA/SoC platform running the ADI Linux
distribution, which enables a MATLAB or Simulink model to
perform the following functions:

•	 Stream data to and from a target
•	 Control the settings of a target
•	 Monitor different target parameters

Tx Channel 2 Q

Tx Channel 2 I

Tx Channel 1 I

Tx Channel 1 Q

PN
GEN

Loop-
back

SPI

GPIO

GPIO

SPI

CTRL

RESETB

O
ut

p
ut

 M
ux

DDS 1A

DDS 2A

Optional DDS

Rx Channel 2 Q

Rx Channel 2 I

Rx Channel 1 I

Rx Channel 1 Q

PN
MON

Optional Correction/Rotation
LV

D
S

 In
te

rf
ac

e

 FDD

 TDD

T
x

P
ac

ki
ng

R
x

U
np

ac
ki

ng

User
Logic

AD9361 Interface Block

DMA

AXI
Lite

User
Logic

FIFO

FIFO FIFO

FIFO AXI

DMA
AXI

intf

intf intf

intf

FB_CLK
TX_FRAME
TX_[D5:D0]

DATA_CLK
RX_FRAME]
RX_[D5:D0]

ENABLE
TXNRX

Rx

Tx

+

DC
Correction

I/Q
Correction

Figure 3. ADI HDL and software infrastructure.

Analog Dialogue 49-09, September 2015 5

The IIO System Object is available in both MATLAB and Sim-
ulink, depending on whether the user calls it from a MATLAB
script or incorporates it into a MATLAB System Block. The
Linux software and HDL infrastructure provided by ADI for
the FMCOMMS platforms is a great environment for proto-
typing SDR applications together with the tools provided by
MathWorks and Xilinx, and it also contains production ready
components that can be integrated into the SDR system—
helping to reduce the time and cost needed to move from
concept to production.

In order to help customers ramp up quickly and easily with
the IIO System Object, we provide several MATLAB and
Simulink examples based on this interface, such as a beacon
frame receiver,12 QPSK transmitter and receiver,13 as well as a
LTE transmitter and receiver.14 In these examples, FMCOM-
MSx platforms are configured by IIO System Object, and are
used as RF front ends, which transmit or receive the analog
signals over the air. These signals are streamed to or from
the target via the IIO System Object. All the other signal pro-
cessing happens in MATLAB or Simulink. Figure 4 is a screen
capture of the beacon frame receiver example, which shows
a typical connection between the IIO System Object and the
other Simulink blocks.

MathWorks Support for Zynq

MathWorks support for Zynq-based SDR comes from the
following four aspects:

1. AD9361 Simulink Model

Since the AD9361 is an integrated RF transceiver chip, signal
probing and internal operation monitoring is not really pos-
sible. For this reason, MathWorks and Analog Devices have
codeveloped a SimRF™ model of the AD9361 that allows a
simulation of the chip’s operation so that customers can see
exactly what’s going on under the hood and how the chip
performs under different test conditions that are hard to rep-
licate in real life. SimRF provides a component library and
simulation engine for designing RF systems using equivalent
baseband or circuit envelope blocks, such as amplifiers, mixers,
and S-parameter blocks. It is a useful and appropriate tool to
model the AD9361 RF transceiver. The system-level AD9361
Agile RF Transceiver model, shown in Figure 5, replicates
exactly the functionality of the AD9361 and is available to
the users as a MathWorks hardware support package.15

Figure 4. Screen capture of the beacon frame receiver example.

Figure 5. MathWorks SimRF model of AD9361 Agile RF receiver.

Analog Dialogue 49-09, September 20156

The SimRF models have been validated in a lab with power
spectral measurements. The characterization of the transceiv-
er’s noise and nonlinearity at different frequencies and power
levels are identified. The models are then designed to generate
the same characterizations, which validates them across the
range of design.

With the AD9361 transceiver SimRF models, the users can do
the following:
•	 Predict the impact of the RF imperfections on the test signals
•	 Use reference tones and LTE signals
•	 Generate or import test vectors and evaluate the effects
	 of nonlinearity, noise, gain, and phase imbalance, spectral 	
	 leakage, and other imperfections introduced by the RF 	
	 transmitter and receiver

•	 Add interfering signals and evaluate the results in the time 	
	 or frequency domains

2. Communications and DSP System Toolbox Functions

MathWorks products such as the Communications System Tool-
box,™16 Signal Processing Toolbox,™17 DSP System Toolbox,™18
and SimRF19 provide industry-standard algorithms and apps
for systematically analyzing, designing, and tuning SDR
systems. All of these tools provide the means to create high
fidelity SDR models that can be used to verify the behavior
and performance of the communications system before moving
to the actual physical implementation.

3. Simulink Workflow for Zynq

MATLAB and Simulink from MathWorks are environments
for multidomain simulation and model-based design that are
well suited to simulating SDR systems with communication
algorithms. Communication algorithms adjust gain, frequency
offset, timing offset, and other performance variables, often for
better synchronization between transmitter and receiver sys-
tems. Evaluating communication algorithms using simulation
is an effective way to determine the suitability of SDR designs
and reduce the time and cost of algorithm development before
committing to expensive hardware testing. Figure 6 depicts an
efficient workflow for designing a communication algorithm
by following these steps:

•	 Build accurate SDR models using the libraries provided
	 by the model-based design environment.

•	 Simulate system behavior to verify that the system is per-	
	 forming as expected.

•	 Generate C code and HDL for real-time testing and 	
	 implementation.

•	 Test communication algorithms using prototyping
	 hardware.

Once the performance of the SDR system is proven to be sat-
isfactory through simulation and testing on the prototyping
hardware, it is safe to take the system implementation and
deploy it onto the final production system.

Build Accurate
System Models

Generate C and HDL
Code for Testing

and
Implementation

Verify and Test
Comms Algorithms

on Prototyping
Hardware

Simulate System
Behavior

Implement Comms
Algorithms on

Production SDR
System

Figure 6. Workflow for communication algorithm design.

4. Simulink Platform Integration to Zynq SDR Kit

Once the SDR system is fully verified in the simulation envi-
ronment using tools like the Embedded Coder®20 and the
HDL Coder™21 from MathWorks, the user can generate C code
with Embedded Coder and VHDL or Verilog using HDL
Coder, and then deploy the code to prototyping hardware for
testing, and afterward, onto the final production system. At
this point, software and hardware implementation require-
ments are specified, such as fixed-point and timing behavior.
Automatic code generation helps to reduce the time needed
to move from concept to actual system implementation and
avoids the introduction of manual coding errors, ensuring that
the actual SDR implementation matches the model. Figure 7
depicts a real-life process of the steps needed to model a SDR
system in Simulink and transfer it onto the final production
system based on a Xilinx Zynq SoC.

The first step is to model and simulate the SDR system in
Simulink. At this stage, the communication algorithm is par-
titioned into blocks that will be implemented in software and
blocks that will be implemented into the programmable logic.
Once the partitioning and the simulation are complete the
SDR model is converted into C code and HDL using Embed-
ded Coder and HDL Coder. A Zynq-based prototyping
system is used to verify the performance of the communication

Simulink

Simulation Prototype Production

Algorithm
Model Embedded Coder

Zynq Zynq

ARM ARM

Algorithm
C

Algorithm
HDL

Prog. Logic Programmable Logic

SDR SDR System

Linux
Driver

Algorithm
C

Linux
Driver

System
Code

AXI
Interface

AXI
Interface

IP1

IP2

IP3
HDL Coder

C Compiler

Vivado

Algorithm
Model

SDR
Model

AXI Bus

Algorithm
HDL

AXI Bus

Figure 7. Path from simulation to production.

Analog Dialogue 49-09, September 2015 7

algorithm and to help further tune the SDR model before
moving to the actual production stage. In the production stage,
the automatically generated C code and HDL are integrated
into the complex production system framework. This workflow
ensures that once the communication algorithm reaches the
production stage it is fully verified and tested and provides a lot
of confidence in the system’s robustness. Zynq Hardware Sup-
port Packages for Embedded Coder and HDL Coder make it
easier to program the Zynq platform by providing a framework
for integrated hardware/software design, simulation, and ver-
ification that integrate model-based design into the workflow,
enabling rapid design iteration cycles and helping to detect and
correct design and specification errors early.22

Conclusions
This article illustrated the requirements and trends of modern
SDR systems and the tools and systems that MathWorks,
Xilinx, and Analog Devices bring to the market in order to
meet these requirements and help drive toward more perfor-
mant SDR solutions. By combining the model-based design
and automatic code generation tools from MathWorks with
the powerful Xilinx Zynq SoCs and Analog Devices integrated
RF transceivers, SDR systems design, verification, testing, and
implementation can be more effective than ever, leading to
higher performance radio systems and reducing the time to
market. Analog Devices FMCOMMS platforms paired with
the Avnet Zynq-7000 AP SoC provide a great prototyping
environment for the SDR algorithms designed using MATLAB
and Simulink from MathWorks. The FMCOMMS platforms
are accompanied by a set of open source reference designs
intended to give a starting point for anyone who wants to
evaluate the system and help kick-start any new SDR project.

 In the next article in this series, we will advance down the
SDR design process as we review the characteristics of auto-
matic dependent surveillance broadcast (ADS-B) signals and
explain how to decode their information in MATLAB/Sim-
ulink in simulation.

For more information about the topics presented in this article,
documentation, videos, and reference designs, check out the
References section.

References
1	 “What is Software-Defined Radio?” Wireless Innovation Forum.
2	 Model-Based Design. MathWorks.
3	 Zynq-7000 All Programmable SoC. Xilinx.
4	 Hill, Tom. “Motor Drives Migrate to Zynq SoC with Help
	 from MATLAB.” Xcell Journal, Issue 87, Second Quarter, 2014.
5	 AD9361.
6	 AD9364.
7	 “Software-Defined Radio Solutions from Analog Devices.”
	 Analog Devices.
8	 IIO Oscilloscope. Analog Devices Wiki.
9	 Simulink Libiio. Analog Devices Wiki.
10	What Is Libiio? Analog Devices Wiki.
11	 IIO System Object. Analog Devices Wiki.
12	Beacon Frame Receiver Example. Analog Devices Wiki.
13	 QPSK Transmitter and Receiver Example. Analog Devices Wiki.
14	LTE Transmitter and Receiver Example. Analog Devices.
15	AD9361.
16	“Communications System Toolbox.” MathWorks.
17	“Signal Processing Toolbox.” MathWorks.
18	“DSP System Toolbox.” MathWorks.
19	SimRF. MathWorks.
20	“HDL Coder.” MathWorks.
21	“Embedded Coder.” MathWorks.
22	“Xilinx Zynq Support from Simulink.” MathWorks.

MATLAB and Simulink are registered trademarks of The MathWorks, Inc.
See www.mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks
of their respective holders.

Di Pu [di.pu@analog.com] is a system modeling applications engineer for ADI, supporting the
design and development of software-defined radio platforms and systems. She has been
working closely with MathWorks to solve mutual end customer challenges. Prior to joining ADI,
she received her B.S. degree from Najing University of Science and Technology (NJUST), Nanjing,
China, in 2007 and her M.S. and Ph.D. degrees from Worcester Polytechnic Institute (WPI),
Worcester, MA, U.S.A., in 2009 and 2013—all in electrical engineering. She is a winner of the 2013
Sigma Xi Research Award for Doctoral Dissertation at WPI.

Andrei Cozma [andrei.cozma@analog.com] is an engineering manager for ADI, supporting the
design and development of system level reference designs. He holds a B.S. degree in industrial
automation and informatics and a Ph.D. in electronics and telecommunications. He has been
involved in the design and development of projects from different industry fields such as
motor control, industrial automation, software-defined radio, and telecommunications.

Tom Hill, system generator product manager, Xilinx, Inc. [tom.hill@xilinx.com]Tom Hill has over
18 years experience in the EDA industry. Hill oversees all products, strategic, and corporate
marketing activities related to Xilinx’s Target Design Platforms for DSP. Hill was most recently
at AccelChip, Inc where he was technical marketing manager responsible for product direction
and application of high level design methodologies and tools to DSP applications. Prior to
AccelChip Hill held positions as product manager, technical marketing manager, technical
marketing engineer, and field applications engineer for various FPGA and ASIC synthesis tools.
Hill began his career as a hardware and ASIC design engineer at Allen-Bradley and Lockheed.
Hill holds a B.S. in electrical engineering from Cleveland State University.

Di Pu

Andrei Cozma

Tom Hill

Also by this Author:

FPGA-Based Systems Increase
Motor-Control Performance

Volume 49, Number 1

http://www.wirelessinnovation.org/introduction_to_sdr
http://www.mathworks.com/model-based-design/
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/
http://issuu.com/xcelljournal/docs/xcell_journal_issue_87/32?e=2232228/6392094
http://issuu.com/xcelljournal/docs/xcell_journal_issue_87/32?e=2232228/6392094
http://www.analog.com/en/products/rf-microwave/integrated-transceivers-transmitters-receivers/wideband-transceivers-ic/ad9361.html
http://www.analog.com/en/products/rf-microwave/integrated-transceivers-transmitters-receivers/wideband-transceivers-ic/ad9364.html
http://www.analog.com/media/en/news-marketing-collateral/solutions-bulletins-brochures/Software-Defined-Radio-Solutions-From-ADI.pdf
http://wiki.analog.com/resources/tools-software/linux-software/iio_oscilloscope
http://wiki.analog.com/resources/tools-software/linux-software/libiio/clients/matlab_simulink?s%5b%5d=libiio
http://wiki.analog.com/resources/tools-software/linux-software/libiio
http://wiki.analog.com/resources/tools-software/linux-software/libiio/clients/matlab_simulink
http://wiki.analog.com/resources/tools-software/linux-software/libiio/clients/beacon_frame_receiver_simulink
http://wiki.analog.com/resources/tools-software/linux-software/libiio/clients/beacon_frame_receiver_simulink
http://wiki.analog.com/resources/tools-software/linux-software/libiio/clients/lte_example
http://www.analog.com/en/products/rf-microwave/integrated-transceivers-transmitters-receivers/wideband-transceivers-ic/ad9361.html
http://www.mathworks.com/products/communications/
http://www.mathworks.com/products/signal/
http://www.mathworks.com/products/dsp-system/
http://www.mathworks.com/products/simrf/
http://www.mathworks.com/products/hdl-coder/
http://www.mathworks.com/products/embedded-coder/
http://www.mathworks.com/hardware-support/zynq.html
https://www.linkedin.com/shareArticle?mini=true&url=http://www.analog.com/library/analogdialogue/archives/49-09/four-step-sdr-01.html&title=Four%20Quick%20Steps%20to%20Production:%20Using%20Model-Based%20Design%20for%20Software-Defined%20Radio&source=Analog%20Dialogue
https://www.facebook.com/sharer/sharer.php?s=100&p[title]=Four%20Quick%20Steps%20to%20Production:%20Using%20Model-Based%20Design%20for%20Software-Defined%20Radio&p[summary]=Four%20Quick%20Steps%20to%20Production:%20Using%20Model-Based%20Design%20for%20Software-Defined%20Radio&p[url]=http://www.analog.com/library/analogdialogue/archives/49-09/four-step-sdr-01.html
https://twitter.com/intent/tweet?text=Four%20Quick%20Steps%20to%20Production:%20Using%20Model-Based%20Design%20for%20Software-Defined%20Radio%20http://www.analog.com/library/analogdialogue/archives/49-09/four-step-sdr-01.html&source=webclient
mailto:di.pu%40analog.com?subject=
mailto:andrei.cozma@analog.com
mailto:tom.hill%40xilinx.com?subject=
http://www.analog.com/library/analogDialogue/archives/49-03/motor_control.html
http://www.analog.com/library/analogDialogue/archives/49-03/motor_control.html
http://www.analog.com/library/analogDialogue/archives/49-03/motor_control.html

	Four Quick Steps to Production: Using Model-Based Design for Software-Defined Radio
	Part 1-the Analog Devices/Xilinx SDR Rapid Prototyping Platform: Its Capabilities, Benefits, and To
	Abstract
	Introduction
	Zynq for SDR
	AD9361 Agile Wideband RF Transceiver IC for SDR
	Zynq SDR Rapid Prototyping Platform
	Reference Design
	Software Infrastructure
	MathWorks Support for Zynq
	1. AD9361 Simulink Model
	2. Communications and DSP System Toolbox Functions
	3. Simulink Workflow for Zynq
	4. Simulink Platform Integration to Zynq SDR Kit

	Conclusions
	References

