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Four Quick Steps to Production:  
Using Model-Based Design for  
Software-Defined Radio 
Part 1—the Analog Devices/Xilinx SDR Rapid Prototyping Platform:  
Its Capabilities, Benefits, and Tools 

By Di Pu, Andrei Cozma, and Tom Hill

Abstract

There is a significant gap between the concept of a wireless 
system and the realization of that working design. Bridging 
this gap typically involves teams of engineers with a variety of 
different skill sets (such as RF, SW, DSP, HDL, and embedded 
Linux®), and in many cases projects get derailed early in the 
development stage because of the difficulty in coordinating 
the efforts of these varied design entities. 

In this four part article, we will examine the advances in  
platforms and tools that allow developers to quickly simu-
late and prototype wireless systems while establishing and 
maintaining a deployable path to production. As a real-world 
example of the process, we will prototype a wireless SDR 
platform that receives and decodes automatic dependent sur-
veillance broadcast (ADS-B) signals to allow us to detect and 
report the position, altitude, and velocity of the commercial 
aircraft flying in our vicinity. The resources required in this 
case are MATLAB® and Simulink and the skills to integrate 
and embed hardware/software. The hardware platform will  
be the Analog Devices/Xilinx® software-defined radio (SDR) 
prototyping system. Using MATLAB and Simulink® the  
following tasks will be performed: 

•	 Design of signal processing algorithms used to decode 	
	 ADS-B messages

•	 Simulation of the RF transceiver receiving ADS-B signals
•	 Generation of C and HDL code
•	 Verification of the HDL code with recorded and live data  
	 on the target transceiver and FPGA 

The final result will be a working RF SDR design running on 
production-worthy hardware, which we will take to a local 
airport and verify its performance and functionality.

The first part of this four part article will discuss the  
Analog Devices/Xilinx SDR prototyping system, its  
capabilities and benefits, and a brief description of the tool  
flow. The second part will review the automatic dependent  
surveillance broadcast (ADS-B) signals and explain how to 
decode their information in MATLAB and Simulink in simu-
lation. The third part will describe and showcase how to use 
hardware in the loop (HIL) and capturing signals with the 
target transceiver, but still doing the signal processing on the 
host in Simulink for verification. The fourth part will show  
how to take the algorithm developed in part 2, verified in part  
3, and use HDL Coder and Embedded Coder from MathWorks  
to generate code and deploy it in the production hardware,  
and finally we’ll operate the platform with real-world ADS-B 
signals at an airport.
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Introduction

With the exponential growth in the ways and means by which 
people need to communicate, modifying radio devices easily 
and cost effectively has become business critical. Based on 
this requirement, software-defined radio  technology has 
been widely employed recently since it brings the flexibility, 
cost efficiency, and power to drive communications forward.1 
The purpose of an SDR system is to implement as much as 
possible of the modulation/demodulation and data process-
ing algorithms in software and reprogrammable logic so that 
the communication system can be easily reconfigured just by 
updating the software and the reprogrammable logic and not 
making any changes to the hardware platform. 
With the advent of system on chip (SoC) devices like the Xilinx 
Zynq.® All Programmable SoC that combine the versatility of 
a CPU and the processing power of an FPGA, designers have 
the means to consolidate the data processing functions of an 
SDR system into a single device while integrating additional 
processing tasks. Processing intensive tasks like the data 
modulation/demodulation algorithms are offloaded to the 
programmable logic of the device while tasks like data decod-
ing and rendering, system monitoring and diagnosis and user 
interface are deferred to the processing unit.

At the same time, prototyping wireless systems has been a dis-
cussion topic for decades but has only in recent years evolved 
into a complete design flow for FPGAs—from model creation 
to complete implementation—due to the evolution of the mod-
eling and simulation tools like MATLAB and Simulink from 
MathWorks. Prototyping wireless systems is transforming the 
way engineers and scientists work by moving design tasks 
from the lab and field to the desktop.2 Now the entire wireless 
system, such as an SDR system, can be modeled, allowing 
the engineer to observe the system’s behavior and to tune it 
before it is actually implemented in the field. This has several 
benefits, such as accelerating system integration and reducing 
the dependency on equipment availability. Moreover, once the 
Simulink model for the SDR system is complete, C and HDL 
code can be generated automatically for implementation on 
Zynq SoCs, saving time and avoiding the introduction of man-
ually coded errors. The risk is further reduced by linking the 
system model to a rapid prototyping environment that allows 
the SDR system to be exercised under real-world  conditions.

This first part of the four part article series will discuss the 
Analog Devices/Xilinx SDR rapid prototyping system, its 
capabilities and benefits, and a brief description of the tool 
flow. The article showcases how Analog Devices RF IC tech-
nology and reference design hardware and software require a 
reduced design skill subset, thus enabling customers to miti-
gate risk and shorten their time to market.
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challenging signal processing applications. Five high through-
put AMBA®-4 AXI high speed interconnects tightly couple the 
programmable logic to the processing system with the equiva-
lent of more than 3,000 pins of effective bandwidth.4 

AD9361 Agile Wideband RF Transceiver IC for SDR

In recent years, Analog Devices has brought to market rev-
olutionary SDR products to support increasingly evolving 
SDR requirements and system architectures. Some of the 
most important Analog Devices products in this field are 
the AD9361/AD9364 integrated RF agile transceivers. The 
AD9361 (2 × 2)5 and AD9364 (1 × 1)6 are high performance, 
highly integrated RF transceiver ICs intended for use in SDR 
architectures in applications such as wireless communications 
infrastructure, defense electronics systems, RF test equipment 
and instrumentation, and general software-defined radio plat-
forms. The devices combine an RF front end with a flexible, 
mixed-signal baseband section and integrated frequency syn-
thesizers, simplifying design-in by providing a configurable 
digital interface to a processor or FPGA. The chips operate 
in the 70 MHz to 6 GHz range, covering most licensed and 
unlicensed bands, and support channel bandwidths from less 
than 200 kHz to 56 MHz by changing the sample rate, digital 
filters, and decimation, all programmable within the AD9361 
and AD9364 devices.7 Figure 2 shows the block diagram of a 
AD9361 device.

Zynq for SDR

Advanced SDR systems are required to execute a combination 
of data processing, communication, and user interface tasks  
that have different processing bandwidth requirements and 
real-time constraints. The hardware platform chosen to imple-
ment such a system must be robust and scalable at the same 
time allowing for future system improvements and expansion. 
Xilinx Zynq-7000 All Programmable SoCs fulfill these require-
ments by supplying a high performance processing system 
combined with programmable logic as shown in Figure 1.3  
The combination of programmable logic and processing system 
delivers superior parallel processing power, real-time perfor-
mance, fast computational speeds, and connectivity versatility. 

The processing system side of the Zynq SoC consists of a dual-
core ARM® Cortex®-A9 processor combined with a NEON 
coprocessor and floating-point extensions to accelerate software 
execution. Embedded Linux or real-time operating systems can 
be deployed on the dual-core ARM processor to fully benefit 
from the system’s capabilities. The processor is self-contained 
and can be used without the need to configure the program-
mable logic, which is a critical element for software developers 
who will want to start developing code in parallel to hardware 
developers who will design the FPGA fabric.

On the programmable logic side, the device has up to 444,000 
logic cells and 2,200 DSP slices that supply massive processing 
bandwidth, allowing the Zynq device to tackle a variety of 
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Figure 1. Xilinx Zynq SoC block diagram.
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In order to help customers shorten time to market and overall development effort, Analog Devices has gone a step further by 
providing SDR solutions within a complete ecosystem of seamless FPGA connectivity, enabling a rapid prototyping and develop-
ment environment for complete radio system design. The AD-FMCOMMSx-EBZ rapid development and prototyping boards are 
a family of high speed analog FMC modules, incorporating AD9361 or AD9364 agile RF transceiver ICs or a discrete signal chain 
that seamlessly connects to the Xilinx FPGA development platform ecosystem. These boards are fully customizable by software 
without any hardware changes and come with downloadable Linux drivers and bare metal software drivers, schematics, board 
layout, and design aid reference materials, all contained on their respective Analog Devices wiki sites. Table 1 summarizes the 
features of the different FMCOMMSx platforms. 

Table 1. FMCOMMSx Platforms

Platform Features

AD-FMCOMMS5-EBZ Integrating two AD9361 2 × 2 agile transceiver ICs, this SDR rapid prototyping board provides full synchroni-
zation capability for four receiver channels and four transmitter channels, enabling any subset of a 4 × 4 MIMO 
system to be created. Wideband 70 MHz to 6 GHz and 2.4 GHz tuned ports are accommodated. AD-FMCOM-
MS5-EBZ resource wiki page: http://wiki.analog.com/resources/eval/user-guides/ad-fmcomms5-ebz

AD-FMCOMMS4-EBZ Integrating the AD9364 agile RF transceiver IC, this 1 × 1 SDR rapid prototyping board can be software config-
ured for highest RF performance in the 2400 MHz to 2500 MHz region, or can be software configured to operate 
over the AD9364’s complete RF tuning range of 70 MHz to 6 GHz for system prototyping and development 
purposes. AD-FMCOMMS4-EBZ resource wiki page: http://wiki.analog.com/resources/eval/user-guides/ad- 
fmcomms4-ebz

AD-FMCOMMS3-EBZ Integrating the AD9361 agile RF transceiver IC, this 2 × 2 version of SDR rapid prototyping board supports the 
AD9361’s full RF tuning range of 70 MHz to 6 GHz. This kit is ideal for the wireless communications SDR system 
architect seeking a unified development platform with wide tuning capabilities. AD-FMCOMMS3-EBZ resource 
wiki page: http://wiki.analog.com/resources/eval/user-guides/ad-fmcomms3-ebz

AD-FMCOMMS2-EBZ Integrating the AD9361 agile RF transceiver IC, this 2 × 2 SDR rapid prototyping board is tuned for highest RF 
performance in the 2400 MHz to 2500 MHz region. This kit is ideal for the RF engineer seeking optimized system 
performance meeting AD9361 data sheet specifications within this defined range of RF spectrum. AD-FMCOM-
MS2-EBZ resource wiki page: http://wiki.analog.com/resources/eval/user-guides/ad-fmcomms2-ebz 

Figure 2. AD9361 block diagram.
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Zynq SDR Rapid Prototyping Platform

Reference Design

Together with the FMCOMMSx platforms, Analog Devices 
provides a complete Vivado framework, with a Linux and 
bare metal software infrastructure that can be used both for 
prototyping purposes as well as a part of the final production 
system. Figure 3 shows the Analog Devices Zynq Infrastruc-
ture to support the FMCOMMSx boards. 

This high level diagram shows how the ADI reference design is 
partitioned on a Xilinx Zynq SoC. An HDMI output is used to 
display the Linux interface on a monitor while a keyboard and 
mouse can be connected to the system on a USB 2.0 port. The 
ARM Cortex-A9 processing system runs Ubuntu Linux pro-
vided by Analog Devices. This includes the Linux IIO drivers 
needed to interface with the Analog Devices FMCOMMS hard-
ware, the IIO Oscilloscope (Scope)8 user space application for 
monitoring and control, a libiio server9 that allows real-time 
data acquisition and system control over TCP together with 
clients running on a remote computer, and optional user appli-
cations that incorporate C code generated by the Embedded 
Coder for the controller’s Simulink model. 

Software Infrastructure

All ADI Linux drivers are based on the Linux Industrial I/O 
(IIO) subsystem, which is now included in all mainline Linux 
kernels. The IIO Scope is an open-source Linux application 
developed by Analog Devices that runs on the dual ARM  
Cortex-A9 cores inside the Xilinx Zynq and has the ability  
to display real-time data acquired from any Analog Devices  
FMC card connected to the Xilinx Zynq platform. The data  
can be displayed either as a time domain, frequency domain,  

or constellation plot. Different popular file formats like comma 
separated values or .mat MATLAB data files are supported 
to save the captured data for further analysis. The IIO Scope 
provides a graphical user interface for changing or reading 
back the configuration of the Analog Devices FMC cards. The 
libiio server allows real-time data acquisition and system con-
trol over transmission control protocol (TCP) together with 
clients running on a remote computer.10 The server runs on 
an embedded target under Linux and manages real-time data 
exchange over TCP between the target and a remote client. 
This library abstracts the low level details of the hardware, and 
provides a simple yet complete programming interface that 
can be used for advanced projects. Its modular architecture, 
well designed API, and built-in network capabilities allow the 
users to create applications that will run on the system not 
only where the IIO devices are connected, but also remotely 
through the network. At first targeted at Linux, it can now be 
used under Windows as well by using the remote back end of 
the library. Written in C and licensed under the LGPL, it fea-
tures bindings for C#, Python, and MATLAB. A MathWorks 
IIO client11 is available as a system object to be integrated in 
native MATLAB and Simulink applications. It is designed to 
exchange data over Ethernet with an ADI hardware system 
connected to a FPGA/SoC platform running the ADI Linux 
distribution, which enables a MATLAB or Simulink model to 
perform the following functions:

•	 Stream data to and from a target 
•	 Control the settings of a target
•	 Monitor different target parameters
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The IIO System Object is available in both MATLAB and Sim-
ulink, depending on whether the user calls it from a MATLAB 
script or incorporates it into a MATLAB System Block. The 
Linux software and HDL infrastructure provided by ADI for 
the FMCOMMS platforms is a great environment for proto-
typing SDR applications together with the tools provided by 
MathWorks and Xilinx, and it also contains production ready 
components that can be integrated into the SDR system— 
helping to reduce the time and cost needed to move from  
concept to production.

In order to help customers ramp up quickly and easily with 
the IIO System Object, we provide several MATLAB and  
Simulink examples based on this interface, such as a beacon 
frame receiver,12 QPSK transmitter and receiver,13 as well as a 
LTE transmitter and receiver.14 In these examples, FMCOM-
MSx platforms are configured by IIO System Object, and are 
used as RF front ends, which transmit or receive the analog 
signals over the air. These signals are streamed to or from 
the target via the IIO System Object. All the other signal pro-
cessing happens in MATLAB or Simulink. Figure 4 is a screen 
capture of the beacon frame receiver example, which shows 
a typical connection between the IIO System Object and the 
other Simulink blocks.

MathWorks Support for Zynq

MathWorks support for Zynq-based SDR comes from the  
following four aspects:

1. AD9361 Simulink Model

Since the AD9361 is an integrated RF transceiver chip, signal 
probing and internal operation monitoring is not really pos-
sible. For this reason, MathWorks and Analog Devices have 
codeveloped a SimRF™ model of the AD9361 that allows a 
simulation of the chip’s operation so that customers can see 
exactly what’s going on under the hood and how the chip 
performs under different test conditions that are hard to rep-
licate in real life. SimRF provides a component library and 
simulation engine for designing RF systems using equivalent 
baseband or circuit envelope blocks, such as amplifiers, mixers, 
and S-parameter blocks. It is a useful and appropriate tool to 
model the AD9361 RF transceiver. The system-level AD9361 
Agile RF Transceiver model, shown in Figure 5, replicates 
exactly the functionality of the AD9361 and is available to  
the users as a MathWorks hardware support package.15

Figure 4. Screen capture of the beacon frame receiver example.

Figure 5. MathWorks SimRF model of AD9361 Agile RF receiver.
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The SimRF models have been validated in a lab with power 
spectral measurements. The characterization of the transceiv-
er’s noise and nonlinearity at different frequencies and power 
levels are identified. The models are then designed to generate 
the same characterizations, which validates them across the 
range of design.

With the AD9361 transceiver SimRF models, the users can do 
the following:
•	 Predict the impact of the RF imperfections on the test signals
•	 Use reference tones and LTE signals
•	 Generate or import test vectors and evaluate the effects  
	 of nonlinearity, noise, gain, and phase imbalance, spectral 	
	 leakage, and other imperfections introduced by the RF 	
	 transmitter and receiver

•	 Add interfering signals and evaluate the results in the time 	
	 or frequency domains

2. Communications and DSP System Toolbox Functions

MathWorks products such as the Communications System Tool-
box,™16 Signal Processing Toolbox,™17 DSP System Toolbox,™18 
and SimRF19 provide industry-standard algorithms and apps 
for systematically analyzing, designing, and tuning SDR 
systems. All of these tools provide the means to create high 
fidelity SDR models that can be used to verify the behavior 
and performance of the communications system before moving 
to the actual physical implementation. 

3. Simulink Workflow for Zynq

MATLAB and Simulink from MathWorks are environments 
for multidomain simulation and model-based design that are 
well suited to simulating SDR systems with communication 
algorithms. Communication algorithms adjust gain, frequency 
offset, timing offset, and other performance variables, often for 
better synchronization between transmitter and receiver sys-
tems. Evaluating communication algorithms using simulation 
is an effective way to determine the suitability of SDR designs 
and reduce the time and cost of algorithm development before 
committing to expensive hardware testing. Figure 6 depicts an 
efficient workflow for designing a communication algorithm 
by following these steps:

•	 Build accurate SDR models using the libraries provided  
	 by the model-based design environment. 

•	 Simulate system behavior to verify that the system is per-	
	 forming as expected.

•	 Generate C code and HDL for real-time testing and 	 
	 implementation.

•	 Test communication algorithms using prototyping  
	 hardware.

Once the performance of the SDR system is proven to be sat-
isfactory through simulation and testing on the prototyping 
hardware, it is safe to take the system implementation and 
deploy it onto the final production system.
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and 
Implementation

Verify and Test 
Comms Algorithms 

on Prototyping 
Hardware

Simulate System 
Behavior

Implement Comms 
Algorithms on 
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Figure 6. Workflow for communication algorithm design.

4. Simulink Platform Integration to Zynq SDR Kit

Once the SDR system is fully verified in the simulation envi-
ronment using tools like the Embedded Coder®20 and the  
HDL Coder™21 from MathWorks, the user can generate C code 
with Embedded Coder and VHDL or Verilog using HDL 
Coder, and then deploy the code to prototyping hardware for 
testing, and afterward, onto the final production system. At 
this point, software and hardware implementation require-
ments are specified, such as fixed-point and timing behavior. 
Automatic code generation helps to reduce the time needed 
to move from concept to actual system implementation and 
avoids the introduction of manual coding errors, ensuring that 
the actual SDR implementation matches the model. Figure 7 
depicts a real-life process of the steps needed to model a SDR 
system in Simulink and transfer it onto the final production 
system based on a Xilinx Zynq SoC. 

The first step is to model and simulate the SDR system in 
Simulink. At this stage, the communication algorithm is par-
titioned into blocks that will be implemented in software and 
blocks that will be implemented into the programmable logic. 
Once the partitioning and the simulation are complete the 
SDR model is converted into C code and HDL using Embed-
ded Coder and HDL Coder. A Zynq-based prototyping 
system is used to verify the performance of the communication 
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Figure 7. Path from simulation to production.



Analog Dialogue 49-09, September 2015 7

algorithm and to help further tune the SDR model before 
moving to the actual production stage. In the production stage, 
the automatically generated C code and HDL are integrated 
into the complex production system framework. This workflow 
ensures that once the communication algorithm reaches the 
production stage it is fully verified and tested and provides a lot 
of confidence in the system’s robustness. Zynq Hardware Sup-
port Packages for Embedded Coder and HDL Coder make it 
easier to program the Zynq platform by providing a framework 
for integrated hardware/software design, simulation, and ver-
ification that integrate model-based design into the workflow, 
enabling rapid design iteration cycles and helping to detect and 
correct design and specification errors early.22

Conclusions
This article illustrated the requirements and trends of modern 
SDR systems and the tools and systems that MathWorks, 
Xilinx, and Analog Devices bring to the market in order to 
meet these requirements and help drive toward more perfor-
mant SDR solutions. By combining the model-based design 
and automatic code generation tools from MathWorks with 
the powerful Xilinx Zynq SoCs and Analog Devices integrated 
RF transceivers, SDR systems design, verification, testing, and 
implementation can be more effective than ever, leading to 
higher performance radio systems and reducing the time to 
market. Analog Devices FMCOMMS platforms paired with 
the Avnet Zynq-7000 AP SoC provide a great prototyping 
environment for the SDR algorithms designed using MATLAB 
and Simulink from MathWorks. The FMCOMMS platforms 
are accompanied by a set of open source reference designs 
intended to give a starting point for anyone who wants to 
evaluate the system and help kick-start any new SDR project.

 In the next article in this series, we will advance down the 
SDR design process as we review the characteristics of auto-
matic dependent surveillance broadcast (ADS-B) signals and 
explain how to decode their information in MATLAB/Sim-
ulink in simulation.

For more information about the topics presented in this article, 
documentation, videos, and reference designs, check out the  
References section.
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