
Best Practices for IEC 62304
Compliance with Model-Based Design

WHITE PAPER

 2

Introduction
For medical device engineers, complying with the IEC 62304 safety standard often involves docu-
ment-based requirements, handwritten coding, and prototyping on physical devices.

Model-Based Design provides a faster, more cost-effective approach to creating high-integrity soft-
ware for medical devices. At the center is a system model that spans requirements development, archi-
tectural analysis and specification, detailed design, implementation, and testing. You refine your
design through simulation and rapid prototyping, then generate code and implement it on embedded
devices.

This paper will discuss how Model-Based Design with MATLAB® and Simulink® can be used in a
process that is compliant with IEC 62304, particularly the higher severity safety class levels B and C.

Terms

The following definitions will be used throughout the paper:

• Verification: confirmation through objective evidence that software development activities
meet required outputs

• Software unit: the smallest software component that is designed, implemented, and verified

• Software item: a software component that may comprise one or more software units; typically,
it is something of intermediate size, but also is used in reference generically to include any-
thing from a unit to a software system

• Software system: a package of software containing one or more software items; it represents a
complete package of functionality, but perhaps only a component of a full medical device

• Subsystem: a grouped component of a Simulink model, usually containing multiple basic or
intrinsic blocks

 3

The Software Development Process

Software Development Planning

The software development process described by the IEC 62304 standard, section 5.1, begins with a
plan for how the major activities and tasks will be accomplished during the project. The standard rec-
ommends developing several different constituent plans, covering all aspects of the development pro-
cess. An organization that adopts Model-Based Design should reference such tools as part of the
development strategy in these planning documents. It’s also important to include the artifacts gener-
ated during that process in the list of deliverables for the software process.

Some typical items that may be created include MATLAB scripts and functions, Simulink models,
data dictionaries, generated production code, S-functions and other user block libraries, simulation
input data (test vectors) and results, and generated documentation such as design documents and test
reports. Industry standards, such as the MathWorks Automotive Advisory Board (MAAB) communi-
ty’s guidance for Simulink modeling, should be considered for applicability to the product under
development. In addition, Simulink Check™ provides a collection of model design standards and tools
to check compliance with standards such as IEC 62304.

Many organizations start from such a set of model design standards and extend or tailor them based
on individual or organizational needs. In addition to model standards, IEC Certification Kit also pro-
vides a reference workflow and tool validation documentation that were evaluated by the TÜV SÜD.
It found that Model-Based Design tools from MathWorks are suitably validated for use in safety-relat-
ed development according to IEC 62304. Finally, note that the development tools themselves should
be managed and version-controlled as part of the software configuration.

Software Requirements Analysis

A significant benefit of Model-Based Design is that it enables designers to better understand system
and software functional requirements. By representing the initial design ideas as live, executable
models, the consistency and correctness of requirements can be established in a much more concrete
way than by analysis of traditional textual requirements documents. In addition to the ability to
model a software item’s behavior, Simulink and associated physical modeling tools in the Simscape™
family can model the environment with which the item interacts, including software algorithms, elec-
tromechanical components, and patient physiology. Simulation allows a software system model to
interact in a deep and meaningful way with its relevant operational environment in order to elaborate
and help verify functional requirements. Alternatively, or in addition, models can be simulated based
on laboratory, clinical, or analytically defined datasets. Requirements that are used to derive Simulink
models are inherently testable via simulation.

 4

Requirements Toolbox™ provides a linking facility to establish traceability between requirements and
components of models, such as Simulink blocks and Stateflow® chart elements. Reports generated
from Simulink can support traceability analysis. The standard requires special attention for those
software items that protect medical professionals and their patients from harm. Such risk control
measures will have associated requirements, and like all requirements, those requirements can link to
elements of the Simulink model. A best practice is to tag risk control requirements with a unique key-
word to use requirements and reporting filter capabilities to facilitate risk control analysis.

Software Architectural Design

According to section 5.3 and annex B.5.3 of the standard, the goal of software architectural design is
to divide the software into major structural components, indicate their external properties, and
demonstrate the relationship among the components. System Composer™ enables the definition, anal-
ysis, and specification of architectures and compositions for model-based system engineering and
software design. System Composer can be used to establish the system and software components,
specify their interfaces and dependencies, and allocate and trace system and safety requirements to
these components.

One application would be to separate risk control measures into a component or subcomponent to
more intuitively track risk control measures and potentially lower the software safety class for other
parts of the software architecture.

Example of system architecture in Simulink. The controller is linked to a
Simulink behavior model representing a software item.

 5

Requirements Toolbox can relate functional requirements and inputs and outputs to representative
constructs in the System Composer model. Reviewing traceability reports can help support the verifi-
cation of the software architecture against the software requirements.

A common scenario is that the path from Simulink models to implementation (for example, produc-
tion code generation from Simulink models via Simulink Coder™ and Embedded Coder®) will be used
only for portions of the software system. There may be very practical reasons, such as the existence of
low-level driver code from a third-party component manufacturer or a desire to reuse existing source
code from a similar product or product line. Model-Based Design supports modular implementation
of software units or items. A Simulink model representing the complete software system design can
also be fully implemented.

Graphical representation of the software architecture is a helpful means to verify as well as express it.
Furthermore, interface consistency can be enforced with stereotyping—essentially the reuse of a type
of interface—for the data shared between components. The architecture can be reviewed interactively
in System Composer or by review of documentation generated from the model.

While the standard recommends review as the primary architecture analysis technique, Model-Based
Design allows the opportunity to verify that the software architecture meets functional requirements
through simulation. The architectural components specified in System Composer can be linked to
executable behavior models in Simulink, and a system-level Simulink simulation can be created to
execute the system architecture or subsections of the same. Such verification is always welcome earlier
in the software development process, as the cost of defect resolution has been reported numerous
times to be a strongly increasing function of the stage in the software development life cycle during
which the defect was detected. Furthermore, coverage analysis (for example, modified condition/deci-
sion coverage) of the portions of the models that were executed during functional verification can
reveal incomplete requirements or unnecessary design elements, both of which are less expensive to
resolve earlier in the development cycle.

Software Detailed Design

Software detailed design can be accomplished in Simulink by creating a hierarchy of behavior models
and subsystems to elaborate a software architecture. If the architecture is expressed in System
Composer, the two tools integrate to import the components and interface specifications and link the
architecture and behavior models. Such a link supports software system design verification activities,
where consistency of the software design with the architecture must be proven.

Software items are further subdivided until the unit level is reached, once again revealing the struc-
ture, properties, and dependencies between the units. Software safety class C requires a documented,
verified design for each software unit. This design must specify all aspects of the unit necessary to
support software implementation. The Simulink model or subsystem that represents the software unit
can be an important part of this detailed design. The model clearly shows the software unit’s interfac-
es and relationship to other software units and items, not only revealed by the block diagrams but
also demonstrated by simulation capability.

 6

The principles of verification of the software architecture described above can be applied to a further
elaborated Simulink model containing detailed design information for safety class C software units.
Software unit design verification must demonstrate that the unit meets its requirements. Links can be
traversed from model to requirements documents and vice versa and synchronized when changes
occur. Reports and highlighting can demonstrate the degree of requirements link coverage in a
Simulink model to support verification.

Modeling standards can assist analysis of the unit design. One option offered by Simulink Check is to
compare models to industry standards, such as IEC 62304 and MISRA C™. Organizations can cus-
tomize and augment this list of automated checks.

Software unit design verification can include functional verification through model simulation. This
is usually accomplished by creating a test harness model referencing the software unit model or con-
taining a library link to the software unit’s subsystem. The test harness model can be configured to
run various unit test scenarios, expressed in a variety of possible ways. Simulink Test™ is a tool to
manage and execute test scenarios and provide expected results. These test cases can be linked to rel-
evant system and software requirements.

Simulink Test implementing an alarm handling test case by calling a test harness model to exercise a
design model. In the harness, the Test Sequence block provides the test vector inputs while a Test

Assessment block checks the outputs.

Simulink Coverage™ can be used to instrument the models to collect execution, data range, and vari-
ous types of logical decision and branch coverage during simulation to evaluate the completeness of
unit test scenarios.

 7

Model highlighted with coverage results. The behavior (Stateflow chart) on the left shows that the alarm
was detected, and the HTML report on the right provides a summary artifact. Embedded hyperlinks

provide traceability to the model under test.

While ideally, requirements-based functional test cases should provide a high degree of model cover-
age during their execution as part of the unit test plan, in practice, this is not always the case. One
example is that defensive aspects of the design, such as input range checking, might not be exercised
via functional requirements-based testing. Simulink Design Verifier™ can help derive additional test
cases based on model structure. One of its features is the use of formal model analysis methods to
produce test cases to meet coverage objectives for a model (for example, 100% modified condition and
decision coverage, or MC/DC) or to show that such a coverage object is unachievable due to limita-
tions in the design. One can use these additional test cases to understand and document missing
derived software requirements and/or to modify the design to improve its testability.

Software Unit Implementation and Verification

Simulink Coder and Embedded Coder can be used to transform a Simulink model into a software
implementation in the C or C++ programming language. The details of software implementation are
inferred from the detailed design expressed in an elaborated model, and the software architecture is
faithful to the design in terms of code interfaces and packaging into functional and file-based code
modules. The code generation tool can provide bidirectional traceability from model elements to code
and can also include the description of requirements linked to model elements as comments. This
provides a basis for managing and tracking the implementation of such functional features and risk
control measures.

 8

The transformation to software may reveal additional derived requirements, such as unit run-time
performance constraints and legacy code interfaces, or compliance with organizational coding stan-
dards. These items can be addressed by modifying the detailed design model and iteratively generat-
ing code. This process completes when unit verification succeeds.

An important area of unit verification is functional verification. Model test scenarios and harnesses
that were created to perform functional detailed design verification on the software unit’s Simulink
model can be used as a baseline to perform implementation functional unit verification. The generat-
ed code can be compiled on the host—that is, the computer that the developer is using to design and
create software—and invoked as a compiled library file in the test harness model for direct model-to-
code comparison using the same test vectors (so-called software-in-the-loop, or SIL, testing). In addi-
tion, it is possible to perform such tests on target-compiled code via target support packages for
Embedded Coder. This processor-in-the-loop (PIL) technique can be used to help verify that the exe-
cutable software has the same behavior as the Simulink model even when it is being executed as if
part of the final device. Code coverage should be captured as part of the testing process to demon-
strate that no unintended functionality was introduced. Simulink Coverage supports instrumenting
the generated code in SIL simulations.

For safety class C software units, software unit acceptance includes additional criteria. Some, such as
event sequence, data and control flow, and initialization of variables, are quite naturally elaborated as
part of the Simulink detailed design model. Examples include automatic block sorting based on data
availability versus function-call triggered execution, explicit signal flow versus global memory access,
and options for explicit or default initialization of signals and states in the model. By using model
coverage as a measure of testing adequacy, functional test scenarios will be created to exercise these
features of the software. As alluded to earlier, run-time performance or coding style aspects of the
implementation can be more subtly represented in the model, and iterative model update and code
generation may be required to meet the criteria. Simulink Check provides model advisor checks to
enforce compliance with modeling standards such as MISRA C:2012, and Polyspace® products can be
used to analyze generated or handwritten C/C++ code for robustness and critical run-time errors.
Two primary features are static analysis of code against industry standards (MISRA and JSF++, for
example) and the detection of potential run-time errors via formal software analysis methods.

The results of functional unit verification activities can be captured with Simulink Report Generator™
and added to the overall unit verification documentation package—that is, the technical file for regu-
latory compliance.

 9

Software Integration and Testing

The software integration process in Model-Based Design may have two distinct phases. The first
(from a unit-to-item or bottom-up perspective) is when the integration tasks are performed within
Simulink. The model hierarchy can be used to compose elaborated software items from verified units
or other items, and code can be generated at any level in the hierarchy one chooses. The Simulink
semantics specify interfaces, rate and order of execution, and call tree. When code is generated from a
larger item or the entire architecture model, these semantics are translated. All the verification, test,
and documentation capabilities presented above for software unit testing can be applied at higher
levels in the model hierarchy. In addition, note that test harness models and Simulink Test procedures
can be created and managed for regression testing during incremental integration. Automating such
iterative testing to increase its repeatability is recommended.

Often, the integrated code generated from a model for one or more software items would be integrat-
ed further with other software to complete the software system. While the benefits of the Model-
Based Design environment will not be available to this process, there is no special consideration
required for such an integration stage due to the origin of the code. Any IEC 62304–compliant inte-
gration plan can be followed. Tools and techniques such as continuous integration may form the
mechanism to build the externally developed software with the software generated using Model-
Based Design, for example.

The Simulink model history feature can become part of a software problem resolution process for
items developed with Model-Based Design. At each save of a model, the user can provide a rationale
for the changes. These entries could reference items tracked in a software problem resolution system.

Software System Testing

By this stage in the development process, Model-Based Design tools have provided significant insight
into the completeness and correctness of the requirements, test cases necessary to exercise the design
and code against those requirements, and documentation to help demonstrate the unit level and inte-
gration level verification of the software items that compose the software system. System testing will
likely be performed outside of the Model-Based Design environment, however, in a manner compliant
with the standard, section 5.7, and following typical organizational practices.

A Simulink model of the system environment can be used during system testing to provide stimuli to
the software. This approach is commonly taken with the assistance of dedicated deterministic hard-
ware and software systems and is often referred to as hardware-in-the-loop, or HIL, testing.
Depending on the complexity of the mathematics involved, HIL systems can often achieve real-time
emulation of the system environment for closed-loop control performance evaluation. Simulink Real-
Time™ can be used to implement HIL testing.

 1 0

The Software Maintenance Process
Model-Based Design assists in the evaluation of the impact of a proposed software change through
simulation of the affected software items. Furthermore, the model is an important design artifact that
can help assess the coupling of a proposed change to various software items. Once the decision is
made to implement a change, the appropriate activities selected by the organization as part of the
software maintenance plan will be carried out, following the recommendations given above for the
software development process.

Software Risk Management

Model-Based Design supports software risk management primarily by the capability to link require-
ments to model elements, which was covered earlier. This link and the reporting capability of
Requirements Toolbox allow engineers to trace from a documented hazard to control measures in the
model (design) to the implementation of these measures in a generated software item and finally to
the simulation tests to assess their effectiveness. The traceability extends to the generated lines of
software via comments and is navigable due to the code generation HTML report and the Navigate to
Code feature in Simulink and Embedded Coder. Embedded Coder can also produce a detailed block-
to-code traceability report as additional evidence.

MathWorks publishes lists of known major issues in its tools. These external bug reports can be
reviewed during a project and items of interest can be managed as part of an anomaly list.

Software Configuration Management

The models and data created as part of the software engineering process must be identified and man-
aged along with the resulting software items. They become a part of the design history of the software
and are necessary in order to recreate or maintain it. Some typical artifacts that may be created
during development activities include Simulink models, MATLAB scripts and functions, data dictio-
naries, generated production code, S-functions and other user block libraries, simulation input data
(test vectors) and results, and generated documentation such as design documents and test results.
Information from a configuration management system, such as version number, save date, and author,
can be incorporated into a Simulink model as informative text displayed in a Model Information
block.

 1 1

Summary
You can use Model-Based Design tools from MathWorks to comply with the software life cycle pro-
cess requirements of IEC 62304. Simulink and associated tools are of particularly high value in the
software development and maintenance processes, due to capabilities far exceeding paper-based
methodologies to complete the key activities of requirements analysis, software design, unit imple-
mentation, and testing. Links are supported between process artifacts (such as requirements docu-
ments) and models, allowing a medical device manufacturer’s risk analysis and problem resolution
processes to remain closely synchronized with system and software models. Model-Based Design
tools provide the ability to contribute to documentation of the software and its development process
as well. For a summary view, see the diagram below, which shows some common usage scenarios of
the tools and typical documentation artifacts that they can produce.

Applicability of Model-Based Design tools for IEC 62304–compliant software development.

Learn more about using MATLAB and Simulink for medical devices:

mathworks.com/solutions/medical-devices.html

https://www.mathworks.com/solutions/medical-devices.html

 1 2

© 2024 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

References

1. Thate, Jeffrey M., Larry E. Kendrick, and Siva Nadarajah. “Caterpillar Automatic Code Generation.” In Proceedings of the
Society of Automotive Engineers World Congress 2004, 2004-01-0894. 2004.

2. Burnett, Edward L. “Rapid Deployment of Aerospace Flight Controls.” Lockheed-Martin Aeronautics, 2006.
https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/solutions/aerospace-defense/files/2006/
madc_2006_03_burnett_lm.pdf.

3. “GM Power t rain Automat ic Code Genera t ion Process.” 2005.
https://www.mathworks.com/company/user_stories/gm-standardizes-on-model-based-design-for-hybrid-powertrain-develop-
ment.html.

4. “Medrad Ensures Safety of MRI Vascular Injection Pump Using MathWorks Tools.” 2004.
https://www.mathworks.com/company/user_stories/medrad-ensures-safety-of-mri-vascular-injection-pump.html.

5. “Alstom Generates Production Code for Safety-Critical Power Converter Control Systems.” 2005.
https://www.mathworks.com/company/user_stories/alstom-generates-production-code-for-safety-critical-power-converter-con-
trol-systems.html.

6. Potter, Bill. “Achieving Six Sigma Software Quality Through the Use of Automatic Code Generation.” Honeywell International,
2005. https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/solutions/aerospace-defense/miadc05/
presentations/potter.pdf.

7. International Electrotechnical Commission. IEC 62304, Medical Device Software – Software Life Cycle Processes. Edition
1.0b. 2006.

8. MathWorks Automotive Advisory Board. Control Algorithm Modeling Guidelines Using MATLAB, Simulink, and Stateflow.
Version 2.1. 2007.

9. “Weinmann Develops Life-Saving Transport Ventilator Using Model-Based Design.” 2013.
https://www.mathworks.com/company/user_stories/weinmann-develops-life-saving-transport-ventilator-using-model-based-de-
sign.html.

10. Solis-Lemus, J. A., E. Costar, D. Doorly, E. C. Kerrigan, C. H. Kennedy, F. Tait, S. Niederer, P. Vincent, and S. Williams.
“A Simulated Single Ventilator / Dual Patient Ventilation Strategy for Acute Respiratory Distress Syndrome During the
COVID-19 Pandemic.” Royal Society Open Science 7 (2020): 200585.

11. Weigers, Karl. Software Requirements. 2nd ed. Microsoft Press, 2003.

12. Boehm, Barry W., and Philip N. Papaccio. “Understanding and Controlling Software Costs.” IEEE Transactions on Software
Engineering 14, no. 10 (1988): 1462–1476.

13. The Motor Industry Software Reliability Association. MISRA C:2012. Guidelines for the Use of the C Language in Critical
Systems. 2012.

14. “MISRA C Compliance for C Code Generated by Real-Time Workshop Embedded Coder.”
http://www.mathworks.com/support/solutions/en/data/1-1IFP0W/?solution=1-1IFP0W.

15. “Certify Embedded Systems Developed Using Simulink and Polyspace Products to IEC 61508 and ISO 26262.”
http://www.mathworks.com/products/iec-61508/.

16. Abraham, Jay, Paul Jones, and Raoul Jetley. “Sound Verification Techniques for Developing High-Integrity Medical Device
Software.” In Proceedings of the Embedded Systems Conference, San Jose, CA, 2009.

17. “The MathWorks External Bug Report Database.” http://www.mathworks.com/support/bugreports.

18. Walker, Gavin, Jonathan Friedman, and Rob Aberg. “Configuration Management of the Model-Based Design Process.”
In Proceedings of the Society of Automotive Engineers World Congress 2007, 2007-01-1775. 2007.

https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/solutions/aerospace-defense/files/2006/madc_2006_03_burnett_lm.pdf
https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/solutions/aerospace-defense/files/2006/madc_2006_03_burnett_lm.pdf
https://www.mathworks.com/company/user_stories/gm-standardizes-on-model-based-design-for-hybrid-powertrain-development.html
https://www.mathworks.com/company/user_stories/gm-standardizes-on-model-based-design-for-hybrid-powertrain-development.html
https://www.mathworks.com/company/user_stories/medrad-ensures-safety-of-mri-vascular-injection-pump.html
https://www.mathworks.com/company/user_stories/alstom-generates-production-code-for-safety-critical-power-converter-control-systems.html
https://www.mathworks.com/company/user_stories/alstom-generates-production-code-for-safety-critical-power-converter-control-systems.html
https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/solutions/aerospace-defense/miadc05/presentations/potter.pdf
https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/solutions/aerospace-defense/miadc05/presentations/potter.pdf
https://www.mathworks.com/company/user_stories/weinmann-develops-life-saving-transport-ventilator-using-model-based-design.html
https://www.mathworks.com/company/user_stories/weinmann-develops-life-saving-transport-ventilator-using-model-based-design.html
http://www.mathworks.com/support/solutions/en/data/1-1IFP0W/?solution=1-1IFP0W
http://www.mathworks.com/products/iec-61508/
http://www.mathworks.com/support/bugreports

