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Introduction 
For medical device engineers, complying with the IEC 62304 safety standard often involves docu-
ment-based requirements, handwritten coding, and prototyping on physical devices.  

Model-Based Design provides a faster, more cost-effective approach to creating high-integrity soft-
ware for medical devices. At the center is a system model that spans requirements development, archi-
tectural analysis and specification, detailed design, implementation, and testing. You refine your 
design through simulation and rapid prototyping, then generate code and implement it on embedded 
devices. 

This paper will discuss how Model-Based Design with MATLAB® and Simulink® can be used in a 
process that is compliant with IEC 62304, particularly the higher severity safety class levels B and C.

Terms 

The following definitions will be used throughout the paper: 

• Verification: confirmation through objective evidence that software development activities 
meet required outputs 

• Software unit: the smallest software component that is designed, implemented, and verified 

• Software item: a software component that may comprise one or more software units; typically, 
it is something of intermediate size, but also is used in reference generically to include any-
thing from a unit to a software system 

• Software system: a package of software containing one or more software items; it represents a 
complete package of functionality, but perhaps only a component of a full medical device 

• Subsystem: a grouped component of a Simulink model, usually containing multiple basic or 
intrinsic blocks
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The Software Development Process 

Software Development Planning 

The software development process described by the IEC 62304 standard, section 5.1, begins with a 
plan for how the major activities and tasks will be accomplished during the project. The standard rec-
ommends developing several different constituent plans, covering all aspects of the development pro-
cess. An organization that adopts Model-Based Design should reference such tools as part of the 
development strategy in these planning documents. It’s also important to include the artifacts gener-
ated during that process in the list of deliverables for the software process.  

Some typical items that may be created include MATLAB scripts and functions, Simulink models, 
data dictionaries, generated production code, S-functions and other user block libraries, simulation 
input data (test vectors) and results, and generated documentation such as design documents and test 
reports. Industry standards, such as the MathWorks Automotive Advisory Board (MAAB) communi-
ty’s guidance for Simulink modeling, should be considered for applicability to the product under 
development. In addition, Simulink Check™ provides a collection of model design standards and tools 
to check compliance with standards such as IEC 62304.  

Many organizations start from such a set of model design standards and extend or tailor them based 
on individual or organizational needs. In addition to model standards, IEC Certification Kit also pro-
vides a reference workflow and tool validation documentation that were evaluated by the TÜV SÜD. 
It found that Model-Based Design tools from MathWorks are suitably validated for use in safety-relat-
ed development according to IEC 62304. Finally, note that the development tools themselves should 
be managed and version-controlled as part of the software configuration. 

Software Requirements Analysis 

A significant benefit of Model-Based Design is that it enables designers to better understand system 
and software functional requirements. By representing the initial design ideas as live, executable 
models, the consistency and correctness of requirements can be established in a much more concrete 
way than by analysis of traditional textual requirements documents. In addition to the ability to 
model a software item’s behavior, Simulink and associated physical modeling tools in the Simscape™ 
family can model the environment with which the item interacts, including software algorithms, elec-
tromechanical components, and patient physiology. Simulation allows a software system model to 
interact in a deep and meaningful way with its relevant operational environment in order to elaborate 
and help verify functional requirements. Alternatively, or in addition, models can be simulated based 
on laboratory, clinical, or analytically defined datasets. Requirements that are used to derive Simulink 
models are inherently testable via simulation. 
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Requirements Toolbox™ provides a linking facility to establish traceability between requirements and 
components of models, such as Simulink blocks and Stateflow® chart elements. Reports generated 
from Simulink can support traceability analysis. The standard requires special attention for those 
software items that protect medical professionals and their patients from harm. Such risk control 
measures will have associated requirements, and like all requirements, those requirements can link to 
elements of the Simulink model. A best practice is to tag risk control requirements with a unique key-
word to use requirements and reporting filter capabilities to facilitate risk control analysis. 

Software Architectural Design 

According to section 5.3 and annex B.5.3 of the standard, the goal of software architectural design is 
to divide the software into major structural components, indicate their external properties, and 
demonstrate the relationship among the components. System Composer™ enables the definition, anal-
ysis, and specification of architectures and compositions for model-based system engineering and 
software design. System Composer can be used to establish the system and software components, 
specify their interfaces and dependencies, and allocate and trace system and safety requirements to 
these components.  

One application would be to separate risk control measures into a component or subcomponent to 
more intuitively track risk control measures and potentially lower the software safety class for other 
parts of the software architecture.

Example of system architecture in Simulink. The controller is linked to a  
Simulink behavior model representing a software item. 
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Requirements Toolbox can relate functional requirements and inputs and outputs to representative 
constructs in the System Composer model. Reviewing traceability reports can help support the verifi-
cation of the software architecture against the software requirements.  

A common scenario is that the path from Simulink models to implementation (for example, produc-
tion code generation from Simulink models via Simulink Coder™ and Embedded Coder®) will be used 
only for portions of the software system. There may be very practical reasons, such as the existence of 
low-level driver code from a third-party component manufacturer or a desire to reuse existing source 
code from a similar product or product line. Model-Based Design supports modular implementation 
of software units or items. A Simulink model representing the complete software system design can 
also be fully implemented. 

Graphical representation of the software architecture is a helpful means to verify as well as express it. 
Furthermore, interface consistency can be enforced with stereotyping—essentially the reuse of a type 
of interface—for the data shared between components. The architecture can be reviewed interactively 
in System Composer or by review of documentation generated from the model. 

While the standard recommends review as the primary architecture analysis technique, Model-Based 
Design allows the opportunity to verify that the software architecture meets functional requirements 
through simulation. The architectural components specified in System Composer can be linked to 
executable behavior models in Simulink, and a system-level Simulink simulation can be created to 
execute the system architecture or subsections of the same. Such verification is always welcome earlier 
in the software development process, as the cost of defect resolution has been reported numerous 
times to be a strongly increasing function of the stage in the software development life cycle during 
which the defect was detected. Furthermore, coverage analysis (for example, modified condition/deci-
sion coverage) of the portions of the models that were executed during functional verification can 
reveal incomplete requirements or unnecessary design elements, both of which are less expensive to 
resolve earlier in the development cycle. 

Software Detailed Design 

Software detailed design can be accomplished in Simulink by creating a hierarchy of behavior models 
and subsystems to elaborate a software architecture. If the architecture is expressed in System 
Composer, the two tools integrate to import the components and interface specifications and link the 
architecture and behavior models. Such a link supports software system design verification activities, 
where consistency of the software design with the architecture must be proven. 

Software items are further subdivided until the unit level is reached, once again revealing the struc-
ture, properties, and dependencies between the units. Software safety class C requires a documented, 
verified design for each software unit. This design must specify all aspects of the unit necessary to 
support software implementation. The Simulink model or subsystem that represents the software unit 
can be an important part of this detailed design. The model clearly shows the software unit’s interfac-
es and relationship to other software units and items, not only revealed by the block diagrams but 
also demonstrated by simulation capability. 
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The principles of verification of the software architecture described above can be applied to a further 
elaborated Simulink model containing detailed design information for safety class C software units. 
Software unit design verification must demonstrate that the unit meets its requirements. Links can be 
traversed from model to requirements documents and vice versa and synchronized when changes 
occur. Reports and highlighting can demonstrate the degree of requirements link coverage in a 
Simulink model to support verification. 

Modeling standards can assist analysis of the unit design. One option offered by Simulink Check is to 
compare models to industry standards, such as IEC 62304 and MISRA C™. Organizations can cus-
tomize and augment this list of automated checks. 

Software unit design verification can include functional verification through model simulation. This 
is usually accomplished by creating a test harness model referencing the software unit model or con-
taining a library link to the software unit’s subsystem. The test harness model can be configured to 
run various unit test scenarios, expressed in a variety of possible ways. Simulink Test™ is a tool to 
manage and execute test scenarios and provide expected results. These test cases can be linked to rel-
evant system and software requirements. 

Simulink Test implementing an alarm handling test case by calling a test harness model to exercise a 
design model. In the harness, the Test Sequence block provides the test vector inputs while a Test 

Assessment block checks the outputs. 

Simulink Coverage™ can be used to instrument the models to collect execution, data range, and vari-
ous types of logical decision and branch coverage during simulation to evaluate the completeness of 
unit test scenarios.
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Model highlighted with coverage results. The behavior (Stateflow chart) on the left shows that the alarm 
was detected, and the HTML report on the right provides a summary artifact. Embedded hyperlinks 

provide traceability to the model under test.  

While ideally, requirements-based functional test cases should provide a high degree of model cover-
age during their execution as part of the unit test plan, in practice, this is not always the case. One 
example is that defensive aspects of the design, such as input range checking, might not be exercised 
via functional requirements-based testing. Simulink Design Verifier™ can help derive additional test 
cases based on model structure. One of its features is the use of formal model analysis methods to 
produce test cases to meet coverage objectives for a model (for example, 100% modified condition and 
decision coverage, or MC/DC) or to show that such a coverage object is unachievable due to limita-
tions in the design. One can use these additional test cases to understand and document missing 
derived software requirements and/or to modify the design to improve its testability. 

Software Unit Implementation and Verification 

Simulink Coder and Embedded Coder can be used to transform a Simulink model into a software 
implementation in the C or C++ programming language. The details of software implementation are 
inferred from the detailed design expressed in an elaborated model, and the software architecture is 
faithful to the design in terms of code interfaces and packaging into functional and file-based code 
modules. The code generation tool can provide bidirectional traceability from model elements to code 
and can also include the description of requirements linked to model elements as comments. This 
provides a basis for managing and tracking the implementation of such functional features and risk 
control measures. 
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The transformation to software may reveal additional derived requirements, such as unit run-time 
performance constraints and legacy code interfaces, or compliance with organizational coding stan-
dards. These items can be addressed by modifying the detailed design model and iteratively generat-
ing code. This process completes when unit verification succeeds. 

An important area of unit verification is functional verification. Model test scenarios and harnesses 
that were created to perform functional detailed design verification on the software unit’s Simulink 
model can be used as a baseline to perform implementation functional unit verification. The generat-
ed code can be compiled on the host—that is, the computer that the developer is using to design and 
create software—and invoked as a compiled library file in the test harness model for direct model-to-
code comparison using the same test vectors (so-called software-in-the-loop, or SIL, testing). In addi-
tion, it is possible to perform such tests on target-compiled code via target support packages for 
Embedded Coder. This processor-in-the-loop (PIL) technique can be used to help verify that the exe-
cutable software has the same behavior as the Simulink model even when it is being executed as if 
part of the final device. Code coverage should be captured as part of the testing process to demon-
strate that no unintended functionality was introduced. Simulink Coverage supports instrumenting 
the generated code in SIL simulations. 

For safety class C software units, software unit acceptance includes additional criteria. Some, such as 
event sequence, data and control flow, and initialization of variables, are quite naturally elaborated as 
part of the Simulink detailed design model. Examples include automatic block sorting based on data 
availability versus function-call triggered execution, explicit signal flow versus global memory access, 
and options for explicit or default initialization of signals and states in the model. By using model 
coverage as a measure of testing adequacy, functional test scenarios will be created to exercise these 
features of the software. As alluded to earlier, run-time performance or coding style aspects of the 
implementation can be more subtly represented in the model, and iterative model update and code 
generation may be required to meet the criteria. Simulink Check provides model advisor checks to 
enforce compliance with modeling standards such as MISRA C:2012, and Polyspace® products can be 
used to analyze generated or handwritten C/C++ code for robustness and critical run-time errors. 
Two primary features are static analysis of code against industry standards (MISRA and JSF++, for 
example) and the detection of potential run-time errors via formal software analysis methods. 

The results of functional unit verification activities can be captured with Simulink Report Generator™ 
and added to the overall unit verification documentation package—that is, the technical file for regu-
latory compliance. 
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Software Integration and Testing  

The software integration process in Model-Based Design may have two distinct phases. The first 
(from a unit-to-item or bottom-up perspective) is when the integration tasks are performed within 
Simulink. The model hierarchy can be used to compose elaborated software items from verified units 
or other items, and code can be generated at any level in the hierarchy one chooses. The Simulink 
semantics specify interfaces, rate and order of execution, and call tree. When code is generated from a 
larger item or the entire architecture model, these semantics are translated. All the verification, test, 
and documentation capabilities presented above for software unit testing can be applied at higher 
levels in the model hierarchy. In addition, note that test harness models and Simulink Test procedures 
can be created and managed for regression testing during incremental integration. Automating such 
iterative testing to increase its repeatability is recommended. 

Often, the integrated code generated from a model for one or more software items would be integrat-
ed further with other software to complete the software system. While the benefits of the Model-
Based Design environment will not be available to this process, there is no special consideration 
required for such an integration stage due to the origin of the code. Any IEC 62304–compliant inte-
gration plan can be followed. Tools and techniques such as continuous integration may form the 
mechanism to build the externally developed software with the software generated using Model-
Based Design, for example. 

The Simulink model history feature can become part of a software problem resolution process for 
items developed with Model-Based Design. At each save of a model, the user can provide a rationale 
for the changes. These entries could reference items tracked in a software problem resolution system. 

Software System Testing 

By this stage in the development process, Model-Based Design tools have provided significant insight 
into the completeness and correctness of the requirements, test cases necessary to exercise the design 
and code against those requirements, and documentation to help demonstrate the unit level and inte-
gration level verification of the software items that compose the software system. System testing will 
likely be performed outside of the Model-Based Design environment, however, in a manner compliant 
with the standard, section 5.7, and following typical organizational practices. 

A Simulink model of the system environment can be used during system testing to provide stimuli to 
the software. This approach is commonly taken with the assistance of dedicated deterministic hard-
ware and software systems and is often referred to as hardware-in-the-loop, or HIL, testing. 
Depending on the complexity of the mathematics involved, HIL systems can often achieve real-time 
emulation of the system environment for closed-loop control performance evaluation. Simulink Real-
Time™ can be used to implement HIL testing. 
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The Software Maintenance Process 
Model-Based Design assists in the evaluation of the impact of a proposed software change through 
simulation of the affected software items. Furthermore, the model is an important design artifact that 
can help assess the coupling of a proposed change to various software items. Once the decision is 
made to implement a change, the appropriate activities selected by the organization as part of the 
software maintenance plan will be carried out, following the recommendations given above for the 
software development process. 

Software Risk Management 

Model-Based Design supports software risk management primarily by the capability to link require-
ments to model elements, which was covered earlier. This link and the reporting capability of 
Requirements Toolbox allow engineers to trace from a documented hazard to control measures in the 
model (design) to the implementation of these measures in a generated software item and finally to 
the simulation tests to assess their effectiveness. The traceability extends to the generated lines of 
software via comments and is navigable due to the code generation HTML report and the Navigate to 
Code feature in Simulink and Embedded Coder. Embedded Coder can also produce a detailed block-
to-code traceability report as additional evidence. 

MathWorks publishes lists of known major issues in its tools. These external bug reports can be 
reviewed during a project and items of interest can be managed as part of an anomaly list. 

Software Configuration Management  

The models and data created as part of the software engineering process must be identified and man-
aged along with the resulting software items. They become a part of the design history of the software 
and are necessary in order to recreate or maintain it. Some typical artifacts that may be created 
during development activities include Simulink models, MATLAB scripts and functions, data dictio-
naries, generated production code, S-functions and other user block libraries, simulation input data 
(test vectors) and results, and generated documentation such as design documents and test results. 
Information from a configuration management system, such as version number, save date, and author, 
can be incorporated into a Simulink model as informative text displayed in a Model Information 
block. 
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Summary 
You can use Model-Based Design tools from MathWorks to comply with the software life cycle pro-
cess requirements of IEC 62304. Simulink and associated tools are of particularly high value in the 
software development and maintenance processes, due to capabilities far exceeding paper-based 
methodologies to complete the key activities of requirements analysis, software design, unit imple-
mentation, and testing. Links are supported between process artifacts (such as requirements docu-
ments) and models, allowing a medical device manufacturer’s risk analysis and problem resolution 
processes to remain closely synchronized with system and software models. Model-Based Design 
tools provide the ability to contribute to documentation of the software and its development process 
as well. For a summary view, see the diagram below, which shows some common usage scenarios of 
the tools and typical documentation artifacts that they can produce.

Applicability of Model-Based Design tools for IEC 62304–compliant software development.

Learn more about using MATLAB and Simulink for medical devices:

mathworks.com/solutions/medical-devices.html

https://www.mathworks.com/solutions/medical-devices.html
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