App Experiment Manager
Busque las mejores opciones de entrenamiento para redes neuronales realizando un barrido a través de un intervalo de valores de hiperparámetros o usando la optimización bayesiana. Use la función integrada trainNetwork
o defina su propia función de entrenamiento personalizada. Pruebe diferentes configuraciones de entrenamiento al mismo tiempo ejecutando el experimento en paralelo. Monitorice su progreso mediante gráficas de entrenamiento. Utilice matrices de confusión y funciones métricas personalizadas para evaluar la red entrenada. Mejore los experimentos mediante la ordenación y el filtrado. Use anotaciones para registrar sus observaciones.
Apps
Experiment Manager | Design and run experiments to train and compare deep learning networks (desde R2020a) |
Objetos
experiments.Monitor | Update results table and training plots for custom training experiments (desde R2021a) |
Funciones
groupSubPlot | Group metrics in experiment training plot (desde R2021a) |
recordMetrics | Record metric values in experiment results table and training plot (desde R2021a) |
updateInfo | Update information columns in experiment results table (desde R2021a) |
Temas
- Create a Deep Learning Experiment for Classification
Train a deep learning network for classification using Experiment Manager. (desde R2020a)
- Create a Deep Learning Experiment for Regression
Train a deep learning network for regression using Experiment Manager. (desde R2020a)
- Use Experiment Manager to Train Networks in Parallel
Run multiple simultaneous trials or one trial at a time on multiple workers. (desde R2020b)
- Offload Deep Learning Experiments as Batch Jobs to a Cluster
Run experiments on a cluster so you can continue working or close MATLAB®. (desde R2022a)
- Evaluate Deep Learning Experiments by Using Metric Functions
Use metric functions to evaluate the results of an experiment. (desde R2020a)
- Tune Experiment Hyperparameters by Using Bayesian Optimization
Find optimal network hyperparameters and training options for convolutional neural networks. (desde R2020b)
- Use Bayesian Optimization in Custom Training Experiments
Create custom training experiments that use Bayesian optimization. (desde R2021b)
- Generate Experiment Using Deep Network Designer
Use Experiment Manager to tune the hyperparameters of a network trained in Deep Network Designer.
- Keyboard Shortcuts for Experiment Manager
Navigate Experiment Manager using only your keyboard.
Solución de problemas