Main Content

Bibliography

[1] Anderson, B.D.O., and S. Vongpanitlerd, Network Analysis, Prentice-Hall, Englewood Cliffs, 1973.

[2] Apkarian, P., P. Gahinet, and G. Becker, “Self-Scheduled H Control of Linear Parameter-Varying Systems,” Proc. Amer. Contr. Conf., 1994, pp. 856-860.

[3] Bambang, R., E. Shimemura, and K. Uchida, “Mixed H2 /H Control with Pole Placement,” State-Feedback Case, Proc. Amer. Contr. Conf., 1993, pp. 2777-2779.

[4] Barmish, B.R., “Stabilization of Uncertain Systems via Linear Control,” IEEE Trans. Aut. Contr., AC–28 (1983), pp. 848-850.

[5] Becker, G., and Packard, P., “Robust Performance of Linear-Parametrically Varying Systems Using Parametrically-Dependent Linear Feedback,” Systems and Control Letters, 23 (1994), pp. 205-215.

[6] Bendsoe, M.P., A. Ben-Tal, and J. Zowe, “Optimization Methods for Truss Geometry and Topology Design,” to appear in Structural Optimization.

[7] Ben-Tal, A., and A. Nemirovski, “Potential Reduction Polynomial-Time Method for Truss Topology Design,” to appear in SIAM J. Contr. Opt.

[8] Boyd, S., and Q. Yang, “Structured and Simultaneous Lyapunov Functions for System Stability Problems,” Int. J. Contr., 49 (1989), pp. 2215-2240.

[9] Boyd, S., L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in Systems and Control Theory, SIAM books, Philadelphia, 1994.

[10] Chilali, M., and P. Gahinet, “H Design with Pole Placement Constraints: an LMI Approach,” to appear in IEEE Trans. Aut. Contr. Also in Proc. Conf. Dec. Contr., 1994, pp. 553-558.

[11] Gahinet, P., and P. Apkarian, “A Linear Matrix Inequality Approach to H Control,” Int. J. Robust and Nonlinear Contr., 4 (1994), pp. 421-448.

[12] Gahinet, P., P. Apkarian, and M. Chilali, “Affine Parameter-Dependent Lyapunov Functions for Real Parametric Uncertainty,“ Proc. Conf. Dec. Contr., 1994, pp. 2026-2031.

[13] Haddad, W.M., and D.S. Berstein, “Parameter-Dependent Lyapunov Functions, Constant Real Parameter Uncertainty, and the Popov Criterion in Robust Analysis and Synthesis: Part 1 and 2,” Proc. Conf. Dec. Contr., 1991, pp. 2274-2279 and 2632-2633.

[14] Iwasaki, T., and R.E. Skelton, “All Controllers for the General H Control Problem: LMI Existence Conditions and State-Space Formulas,” Automatica, 30 (1994), pp. 1307-1317.

[15] Horisberger, H.P., and P.R. Belanger, “Regulators for Linear Time-Varying Plants with Uncertain Parameters,” IEEE Trans. Aut. Contr., AC–21 (1976), pp. 705-708.

[16] How, J.P., and S.R. Hall, “Connection between the Popov Stability Criterion and Bounds for Real Parameter Uncertainty,” Proc. Amer. Contr. Conf., 1993, pp. 1084-1089.

[17] Khargonekar, P.P., and M.A. Rotea, “Mixed H2 /H Control: a Convex Optimization Approach,” IEEE Trans. Aut. Contr., 39 (1991), pp. 824-837.

[18] Masubuchi, I., A. Ohara, and N. Suda, “LMI-Based Controller Synthesis: A Unified Formulation and Solution,” submitted to Int. J. Robust and Nonlinear Contr., 1994.

[19] Nemirovski, A., and P. Gahinet, “The Projective Method for Solving Linear Matrix Inequalities,” Proc. Amer. Contr. Conf., 1994, pp. 840-844.

[20] Nesterov, Yu, and A. Nemirovski, Interior Point Polynomial Methods in Convex Programming: Theory and Applications, SIAM Books, Philadelphia, 1994.

[21] Packard, A., and J.C. Doyle, “The Complex Structured Singular Value,” Automatica, 29 (1994), pp. 71-109.

[22] Popov, V.M., “Absolute Stability of Nonlinear Systems of Automatic Control,” Automation and Remote Control, 22 (1962), pp. 857-875.

[23] Scherer, C., “Mixed H2 H Control,” to appear in Trends in Control: A European Perspective, volume of the special contributions to the ECC 1995.

[24] Stein, G., and J.C. Doyle, “Beyond Singular Values and Loop Shapes,” J. Guidance, 14 (1991), pp. 5-16.

[25] Vidyasagar, M., Nonlinear System Analysis, Prentice-Hall, Englewood Cliffs, 1992.

[26] Willems, J.C., “Least-Squares Stationary Optimal Control and the Algebraic Riccati Equation,” IEEE Trans. Aut. Contr., AC–16 (1971), pp. 621-634.

[27] Young, P.M., M.P. Newlin, and J.C. Doyle, “Let's Get Real,” in Robust Control Theory, Springer Verlag, 1994, pp. 143-174.

[28] Zames, G., “On the Input-Output Stability of Time-Varying Nonlinear Feedback Systems, Part I and II,” IEEE Trans. Aut. Contr., AC–11 (1966), pp. 228-238 and 465-476.

Go to top of page