Main Content

La traducción de esta página está obsoleta. Haga clic aquí para ver la última versión en inglés.

Machine learning y deep learning para señales

Etiquetado de señales, ingeniería de características, generación de conjuntos de datos

Signal Processing Toolbox™ proporciona funcionalidades para realizar el etiquetado de señales, la ingeniería de características y la generación de conjuntos de datos en los flujos de trabajo de machine learning y deep learning.

Apps

Signal AnalyzerVisualize and compare multiple signals and spectra
Signal LabelerEtiquete atributos de señal, regiones y puntos de interés
EDF File AnalyzerView EDF or EDF+ files

Funciones

expandir todo

labeledSignalSetCreate labeled signal set
signalLabelDefinitionCreate signal label definition
countlabelsCount number of unique labels
folders2labelsGet list of labels from folder names
splitlabelsFind indices to split labels according to specified proportions
signalMaskModify and convert signal masks and extract signal regions of interest
binmask2sigroiConvert binary mask to matrix of ROI limits
extendsigroiExtend signal regions of interest to left and right
extractsigroiExtract signal regions of interest
mergesigroiMerge signal regions of interest
removesigroiRemove signal regions of interest
shortensigroiShorten signal regions of interest from left and right
sigroi2binmaskConvert matrix of ROI limits to binary mask
edfinfoGet information about EDF/EDF+ file
edfwriteCreate or modify EDF or EDF+ file
edfheaderCreate header structure for EDF or EDF+ file
edfreadLeer datos del archivo EDF/EDF+
signalDatastoreDatastore for collection of signals
dlstftDeep learning short-time Fourier transform
findchangeptsFind abrupt changes in signal
findpeaksEncontrar los máximos locales
findsignalFind signal location using similarity search
fsstFourier synchrosqueezed transform
instbwEstimate instantaneous bandwidth
instfreqEstimate instantaneous frequency
pentropySpectral entropy of signal
periodogramPeriodogram power spectral density estimate
pkurtosisSpectral kurtosis from signal or spectrogram
powerbwPower bandwidth
pspectrumAnalyze signals in the frequency and time-frequency domains
pwelchWelch’s power spectral density estimate

Temas

Choose an App to Label Ground Truth Data

Decide which app to use to label ground truth data: Image Labeler, Video Labeler, Ground Truth Labeler, Lidar Labeler, Signal Labeler, or Audio Labeler.

Radar and Communications Waveform Classification Using Deep Learning (Phased Array System Toolbox)

This example shows how to classify radar and communications waveforms using the Wigner-Ville distribution (WVD) and a deep convolutional neural network (CNN).

Pedestrian and Bicyclist Classification Using Deep Learning (Radar Toolbox)

Classify pedestrians and bicyclists based on their micro-Doppler characteristics using a deep learning network and time-frequency analysis.

Music Genre Classification Using Wavelet Time Scattering (Wavelet Toolbox)

Classify the genre of a musical excerpt using wavelet time scattering and the audio datastore.

Wavelet Time Scattering Classification of Phonocardiogram Data (Wavelet Toolbox)

Classify human phonocardiogram recordings using wavelet time scattering and a support vector machine classifier.

Train Spoken Digit Recognition Network Using Out-of-Memory Features

Train a spoken digit recognition network on out-of-memory auditory spectrograms using a transformed datastore.

Información relacionada

Deep Learning in MATLAB (Deep Learning Toolbox)

Sequence Classification Using Deep Learning (Deep Learning Toolbox)

Ejemplos destacados