Esta página aún no se ha traducido para esta versión. Puede ver la versión más reciente de esta página en inglés.

kfoldMargin

Classification margins for observations not used for training

Sintaxis

M = kfoldMargin(obj)

Description

M = kfoldMargin(obj) returns classification margins obtained by cross-validated classification model obj. For every fold, this method computes classification margins for in-fold observations using a model trained on out-of-fold observations.

Argumentos de entrada

obj

A partitioned classification model of type ClassificationPartitionedModel or ClassificationPartitionedEnsemble.

Output Arguments

M

The classification margin.

Ejemplos

expandir todo

Find the k-fold margins for an ensemble that classifies the ionosphere data.

Load the ionosphere data set.

load ionosphere

Create a template tree stump.

t = templateTree('MaxNumSplits',1);

Train a classification ensemble of decision trees. Specify t as the weak learner.

Mdl = fitcensemble(X,Y,'Method','AdaBoostM1','Learners',t);

Cross validate the classifier using 10-fold cross validation.

cvens = crossval(Mdl);

Compute the k-fold margins. Display summary statistics for the margins.

m = kfoldMargin(cvens);
marginStats = table(min(m),mean(m),max(m),...
    'VariableNames',{'Min','Mean','Max'})
marginStats=1×3 table
      Min       Mean      Max  
    _______    ______    ______

    -11.312    7.3236    23.517

Más acerca de

expandir todo