edge
Classification edge
Syntax
E = edge(obj,X,Y)
E = edge(obj,X,Y,Name,Value)
Description
returns the classification edge for E
= edge(obj
,X
,Y
)obj
with data
X
and classification Y
.
computes the edge with additional options specified by one or more
E
= edge(obj
,X
,Y
,Name,Value
)Name,Value
pair arguments.
Note
If the predictor data X
contains any missing values, the
edge
function can return NaN. For more details,
see edge can return NaN for predictor data with missing values.
Input Arguments
|
Discriminant analysis classifier of class |
|
Matrix where each row represents an observation, and each column
represents a predictor. The number of columns in |
|
Class labels, with the same data type as exists in |
Name-Value Arguments
Specify optional pairs of arguments as
Name1=Value1,...,NameN=ValueN
, where Name
is
the argument name and Value
is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.
Before R2021a, use commas to separate each name and value, and enclose
Name
in quotes.
|
Observation weights, a numeric vector of length
Default: |
Output Arguments
|
Edge, a scalar representing the weighted average value of the margin. |
Examples
Compute the classification edge and margin for the Fisher iris data, trained on its first two columns of data, and view the last 10 entries:
load fisheriris X = meas(:,1:2); obj = fitcdiscr(X,species); E = edge(obj,X,species) E = 0.4980 M = margin(obj,X,species); M(end-10:end) ans = 0.6551 0.4838 0.6551 -0.5127 0.5659 0.4611 0.4949 0.1024 0.2787 -0.1439 -0.4444
The classifier trained on all the data is better:
obj = fitcdiscr(meas,species); E = edge(obj,meas,species) E = 0.9454 M = margin(obj,meas,species); M(end-10:end) ans = 0.9983 1.0000 0.9991 0.9978 1.0000 1.0000 0.9999 0.9882 0.9937 1.0000 0.9649
More About
Extended Capabilities
Version History
See Also
ClassificationDiscriminant
| fitcdiscr
| loss
| margin
| predict