Esta página aún no se ha traducido para esta versión. Puede ver la versión más reciente de esta página en inglés.

random

Clase: CompactLinearModel

Simulate responses for linear regression model

Sintaxis

ysim = random(mdl)
ysim = random(mdl,Xnew)

Description

ysim = random(mdl) simulates responses from the fitted linear model mdl at the original design points.

ysim = random(mdl,Xnew) simulates responses from the mdl linear model to the data in Xnew, adding random noise.

Argumentos de entrada

expandir todo

Linear model object, specified as a full LinearModel object constructed using fitlm or stepwiselm, or a compacted CompactLinearModel object constructed using compact.

New predictor input values, specified as a table, dataset array, or numeric matrix.

  • If Xnew is a table or dataset array, it must contain the predictor names in mdl.

  • If Xnew is a numeric matrix, it must have the same number of variables (columns) as was used to create mdl. Furthermore, all variables used in creating mdl must be numeric.

Output Arguments

expandir todo

Predicted mean values at Xnew, perturbed by random noise, returned as a numeric vector. The noise is independent and normally distributed, with mean equal to zero, and variance equal to the estimated error variance of the model.

Ejemplos

expandir todo

Create a model of car mileage as a function of weight, and simulate the response.

Create a quadratic model of car mileage as a function of weight from the carsmall data.

load carsmall
X = Weight;
y = MPG;
mdl = fitlm(X,y,'quadratic');

Create simulated responses to the data.

Xnew = X;
ysim = random(mdl,Xnew);

Plot the original responses and the simulated responses to see how they differ.

plot(X,y,'o',X,ysim,'x')
legend('Data','Simulated')

Alternatives

For predictions without random noise, use predict or feval.

Capacidades ampliadas

Introducido en R2012a