NonLinearModel class
Nonlinear regression model class
Description
An object comprising training data, model description, diagnostic information, and
fitted coefficients for a nonlinear regression. Predict model responses with the
predict
or feval
methods.
Construction
Create a NonLinearModel
object using fitnlm
.
Properties
CoefficientCovariance
— Covariance matrix of coefficient estimates
numeric matrix
This property is read-only.
Covariance matrix of coefficient estimates, specified as a p-by-p matrix of numeric values. p is the number of coefficients in the fitted model.
For details, see Coefficient Standard Errors and Confidence Intervals.
Data Types: single
| double
CoefficientNames
— Coefficient names
cell array of character vectors
This property is read-only.
Coefficient names, specified as a cell array of character vectors, each containing the name of the corresponding term.
Data Types: cell
Coefficients
— Coefficient values
table
This property is read-only.
Coefficient values, specified as a table.
Coefficients
contains one row for each coefficient and these
columns:
Estimate
— Estimated coefficient valueSE
— Standard error of the estimatetStat
— t-statistic for a two-sided test with the null hypothesis that the coefficient is zeropValue
— p-value for the t-statistic
Use anova
(only for a linear regression model) or
coefTest
to perform other tests on the coefficients. Use
coefCI
to find the confidence intervals of the coefficient
estimates.
To obtain any of these columns as a vector, index into the property
using dot notation. For example, obtain the estimated coefficient vector in the model
mdl
:
beta = mdl.Coefficients.Estimate
Data Types: table
Diagnostics
— Diagnostic information
table
This property is read-only.
Diagnostic information for the model, specified as a table. Diagnostics
can help identify outliers and influential observations.
Diagnostics
contains the following fields.
Field | Meaning | Utility |
---|---|---|
Leverage | Diagonal elements of HatMatrix | Leverage indicates to what extent the predicted value for
an observation is determined by the observed value for that
observation. A value close to 1 indicates
that the prediction is largely determined by that
observation, with little contribution from the other
observations. A value close to 0
indicates the fit is largely determined by the other
observations. For a model with P
coefficients and N observations, the
average value of Leverage is
P/N . An observation with
Leverage larger than
2*P/N can be regarded as having high
leverage. |
CooksDistance | Cook's measure of scaled change in fitted values | CooksDistance is a measure of scaled
change in fitted values. An observation with
CooksDistance larger than three times
the mean Cook's distance can be an outlier. |
HatMatrix | Projection matrix to compute fitted from observed responses | HatMatrix is an
N -by-N matrix such
that Fitted = HatMatrix*Y ,
where Y is the response vector and
Fitted is the vector of fitted
response values. |
Data Types: table
DFE
— Degrees of freedom for error
positive integer
This property is read-only.
Degrees of freedom for the error (residuals), equal to the number of observations minus the number of estimated coefficients, specified as a positive integer.
Data Types: double
Fitted
— Fitted response values based on input data
numeric vector
This property is read-only.
Fitted (predicted) values based on the input data, specified as a numeric
vector. fitnlm
attempts to make
Fitted
as close as possible to the response
data.
Data Types: single
| double
Formula
— Model information
NonLinearFormula
object
This property is read-only.
Model information, specified as a NonLinearFormula
object.
Display the formula of the fitted model mdl
by using
dot notation.
mdl.Formula
Iterative
— Information about fitting process
structure
This property is read-only.
Information about the fitting process, specified as a structure with the following fields:
InitialCoefs
— Initial coefficient values (thebeta0
vector)IterOpts
— Options included in theOptions
name-value pair argument forfitnlm
.
Data Types: struct
LogLikelihood
— Loglikelihood
numeric value
This property is read-only.
Loglikelihood of the model distribution at the response values, specified as a numeric value. The mean is fitted from the model, and other parameters are estimated as part of the model fit.
Data Types: single
| double
ModelCriterion
— Criterion for model comparison
structure
This property is read-only.
Criterion for model comparison, specified as a structure with these fields:
AIC
— Akaike information criterion.AIC = –2*logL + 2*m
, wherelogL
is the loglikelihood andm
is the number of estimated parameters.AICc
— Akaike information criterion corrected for the sample size.AICc = AIC + (2*m*(m + 1))/(n – m – 1)
, wheren
is the number of observations.BIC
— Bayesian information criterion.BIC = –2*logL + m*log(n)
.CAIC
— Consistent Akaike information criterion.CAIC = –2*logL + m*(log(n) + 1)
.
Information criteria are model selection tools that you can use to compare multiple models fit to the same data. These criteria are likelihood-based measures of model fit that include a penalty for complexity (specifically, the number of parameters). Different information criteria are distinguished by the form of the penalty.
When you compare multiple models, the model with the lowest information criterion value is the best-fitting model. The best-fitting model can vary depending on the criterion used for model comparison.
To obtain any of the criterion values as a scalar, index into the property using dot
notation. For example, obtain the AIC value aic
in the model
mdl
:
aic = mdl.ModelCriterion.AIC
Data Types: struct
ModelFitVsNullModel
— F-statistic of regression model
structure
This property is read-only.
F-statistic of the regression model, specified as a structure. The
ModelFitVsNullModel
structure contains these fields:
Fstats
— F-statistic of the fitted model versus the null modelPvalue
— p-value for the F-statisticNullModel
— null model type
Data Types: struct
MSE
— Mean squared error
numeric value
This property is read-only.
Mean squared error, specified as a numeric value. The mean squared error is an estimate of the variance of the error term in the model.
Data Types: single
| double
NumCoefficients
— Number of model coefficients
positive integer
This property is read-only.
Number of coefficients in the fitted model, specified as a positive
integer. NumCoefficients
is the same as
NumEstimatedCoefficients
for
NonLinearModel
objects.
NumEstimatedCoefficients
is equal to the degrees of
freedom for regression.
Data Types: double
NumEstimatedCoefficients
— Number of estimated coefficients
positive integer
This property is read-only.
Number of estimated coefficients in the fitted model, specified as a
positive integer. NumEstimatedCoefficients
is the same as
NumCoefficients
for NonLinearModel
objects. NumEstimatedCoefficients
is equal to the degrees
of freedom for regression.
Data Types: double
NumPredictors
— Number of predictor variables
positive integer
This property is read-only.
Number of predictor variables used to fit the model, specified as a positive integer.
Data Types: double
NumVariables
— Number of variables
positive integer
This property is read-only.
Number of variables in the input data, specified as a positive integer.
NumVariables
is the number of variables in the original table or
dataset, or the total number of columns in the predictor matrix and response
vector.
NumVariables
also includes any variables that are not used to fit
the model as predictors or as the response.
Data Types: double
ObservationInfo
— Observation information
table
This property is read-only.
Observation information, specified as an n-by-4 table, where
n is equal to the number of rows of input data.
ObservationInfo
contains the columns described in this
table.
Column | Description |
---|---|
Weights | Observation weights, specified as a numeric value. The default value
is 1 . |
Excluded | Indicator of excluded observations, specified as a logical value. The
value is true if you exclude the observation from the
fit by using the 'Exclude' name-value pair
argument. |
Missing | Indicator of missing observations, specified as a logical value. The
value is true if the observation is missing. |
Subset | Indicator of whether or not the fitting function uses the
observation, specified as a logical value. The value is
true if the observation is not excluded or
missing, meaning the fitting function uses the observation. |
To obtain any of these columns as a vector, index into the property using dot
notation. For example, obtain the weight vector w
of the model
mdl
:
w = mdl.ObservationInfo.Weights
Data Types: table
ObservationNames
— Observation names
cell array of character vectors
This property is read-only.
Observation names, specified as a cell array of character vectors containing the names of the observations used in the fit.
If the fit is based on a table or dataset containing observation names,
ObservationNames
uses those names.Otherwise,
ObservationNames
is an empty cell array.
Data Types: cell
PredictorNames
— Names of predictors used to fit model
cell array of character vectors
This property is read-only.
Names of predictors used to fit the model, specified as a cell array of character vectors.
Data Types: cell
Residuals
— Residuals for fitted model
table
This property is read-only.
Residuals for the fitted model, specified as a table that contains one row for each observation and the columns described in this table.
Column | Description |
---|---|
Raw | Observed minus fitted values |
Pearson | Raw residuals divided by the root mean squared error (RMSE) |
Standardized | Raw residuals divided by their estimated standard deviation |
Studentized | Raw residual divided by an independent estimate of the residual standard deviation. The residual for observation i is divided by an estimate of the error standard deviation based on all observations except observation i. |
Use plotResiduals
to create a plot of the residuals. For details, see
Residuals.
Rows not used in the fit because of missing values (in
ObservationInfo.Missing
) or excluded values (in
ObservationInfo.Excluded
) contain NaN
values.
To obtain any of these columns as a vector, index into the property using dot notation.
For example, obtain the raw residual vector r
in the model
mdl
:
r = mdl.Residuals.Raw
Data Types: table
ResponseName
— Response variable name
character vector
This property is read-only.
Response variable name, specified as a character vector.
Data Types: char
RMSE
— Root mean squared error
numeric value
This property is read-only.
Root mean squared error, specified as a numeric value. The root mean squared error is an estimate of the standard deviation of the error term in the model.
Data Types: single
| double
Robust
— Robust fit information
structure
This property is read-only.
Robust fit information, specified as a structure with the following fields:
Field | Description |
---|---|
WgtFun | Robust weighting function, such as
'bisquare' (see robustfit ) |
Tune | Value specified for tuning parameter (can be
[] ) |
Weights | Vector of weights used in final iteration of robust fit |
This structure is empty unless fitnlm
constructed the model
using robust regression.
Data Types: struct
Rsquared
— R-squared value for model
structure
This property is read-only.
R-squared value for the model, specified as a structure with two fields:
Ordinary
— Ordinary (unadjusted) R-squaredAdjusted
— R-squared adjusted for the number of coefficients
The R-squared value is the proportion of the total sum of squares explained by the
model. The ordinary R-squared value relates to the SSR
and
SST
properties:
Rsquared = SSR/SST
,
where SST
is the total sum of squares, and
SSR
is the regression sum of squares.
For details, see Coefficient of Determination (R-Squared).
To obtain either of these values as a scalar, index into the property using dot
notation. For example, obtain the adjusted R-squared value in the model
mdl
:
r2 = mdl.Rsquared.Adjusted
Data Types: struct
SSE
— Sum of squared errors
numeric value
This property is read-only.
Sum of squared errors (residuals), specified as a numeric value. If the model was
trained with observation weights, the sum of squares in the SSE
calculation is the weighted sum of squares.
Data Types: single
| double
SSR
— Regression sum of squares
numeric value
This property is read-only.
Regression sum of squares, specified as a numeric value.
SSR
is equal to the sum of the
squared deviations between the fitted values and the mean of the
response. If the model was trained with observation weights, the
sum of squares in the SSR
calculation is
the weighted sum of squares.
Data Types: single
| double
SST
— Total sum of squares
numeric value
This property is read-only.
Total sum of squares, specified as a numeric value. SST
is equal
to the sum of squared deviations of the response vector y
from the
mean(y)
. If the model was trained with observation weights, the
sum of squares in the SST
calculation is the weighted sum of
squares.
Data Types: single
| double
VariableInfo
— Information about variables
table
This property is read-only.
Information about variables contained in Variables
, specified as a
table with one row for each variable and the columns described in this table.
Column | Description |
---|---|
Class | Variable class, specified as a cell array of character vectors, such
as 'double' and
'categorical' |
Range | Variable range, specified as a cell array of vectors
|
InModel | Indicator of which variables are in the fitted model, specified as a
logical vector. The value is true if the model
includes the variable. |
IsCategorical | Indicator of categorical variables, specified as a logical vector.
The value is true if the variable is
categorical. |
VariableInfo
also includes any variables that are not used to fit
the model as predictors or as the response.
Data Types: table
VariableNames
— Names of variables
cell array of character vectors
This property is read-only.
Names of variables, specified as a cell array of character vectors.
If the fit is based on a table or dataset, this property provides the names of the variables in the table or dataset.
If the fit is based on a predictor matrix and response vector,
VariableNames
contains the values specified by the'VarNames'
name-value pair argument of the fitting method. The default value of'VarNames'
is{'x1','x2',...,'xn','y'}
.
VariableNames
also includes any variables that are not used to fit
the model as predictors or as the response.
Data Types: cell
Variables
— Input data
table
This property is read-only.
Input data, specified as a table. Variables
contains both predictor
and response values. If the fit is based on a table or dataset array,
Variables
contains all the data from the table or dataset array.
Otherwise, Variables
is a table created from the input data matrix
X
and the response vector y
.
Variables
also includes any variables that are not used to fit the
model as predictors or as the response.
Data Types: table
Object Functions
coefCI | Confidence intervals of coefficient estimates of nonlinear regression model |
coefTest | Linear hypothesis test on nonlinear regression model coefficients |
feval | Evaluate nonlinear regression model prediction |
partialDependence | Compute partial dependence |
plotPartialDependence | Create partial dependence plot (PDP) and individual conditional expectation (ICE) plots |
plotDiagnostics | Plot diagnostics of nonlinear regression model |
plotResiduals | Plot residuals of nonlinear regression model |
plotSlice | Plot of slices through fitted nonlinear regression surface |
predict | Predict response of nonlinear regression model |
random | Simulate responses for nonlinear regression model |
Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.
Examples
Fit a Nonlinear Regression Model
Fit a nonlinear regression model for auto mileage based on the carbig
data. Predict the mileage of an average car.
Load the sample data. Create a matrix X
containing the measurements for the horsepower (Horsepower
) and weight (Weight
) of each car. Create a vector y
containing the response values in miles per gallon (MPG
).
load carbig
X = [Horsepower,Weight];
y = MPG;
Fit a nonlinear regression model.
modelfun = @(b,x)b(1) + b(2)*x(:,1).^b(3) + ...
b(4)*x(:,2).^b(5);
beta0 = [-50 500 -1 500 -1];
mdl = fitnlm(X,y,modelfun,beta0)
mdl = Nonlinear regression model: y ~ b1 + b2*x1^b3 + b4*x2^b5 Estimated Coefficients: Estimate SE tStat pValue ________ _______ ________ ________ b1 -49.383 119.97 -0.41164 0.68083 b2 376.43 567.05 0.66384 0.50719 b3 -0.78193 0.47168 -1.6578 0.098177 b4 422.37 776.02 0.54428 0.58656 b5 -0.24127 0.48325 -0.49926 0.61788 Number of observations: 392, Error degrees of freedom: 387 Root Mean Squared Error: 3.96 R-Squared: 0.745, Adjusted R-Squared 0.743 F-statistic vs. constant model: 283, p-value = 1.79e-113
Find the predicted mileage of an average car. Because the sample data contains some missing (NaN
) observations, compute the mean using mean
with the 'omitnan'
option.
Xnew = mean(X,'omitnan')
Xnew = 1×2
103 ×
0.1051 2.9794
MPGnew = predict(mdl,Xnew)
MPGnew = 21.8073
More About
Hat Matrix
The hat matrix H is defined in terms of the data matrix X and the Jacobian matrix J:
Here f is the nonlinear model function, and β is the vector of model coefficients.
The Hat Matrix H is
H = J(JTJ)–1JT.
The diagonal elements Hii satisfy
where n is the number of observations (rows of X), and p is the number of coefficients in the regression model.
Leverage
Leverage is a measure of the effect of a particular observation on the regression predictions due to the position of that observation in the space of the inputs.
The leverage of observation i is the value of the ith diagonal term hii of the hat matrix H. Because the sum of the leverage values is p (the number of coefficients in the regression model), an observation i can be considered an outlier if its leverage substantially exceeds p/n, where n is the number of observations.
Cook’s Distance
The Cook’s distance Di of observation i is
where
is the jth fitted response value.
is the jth fitted response value, where the fit does not include observation i.
MSE is the mean squared error.
p is the number of coefficients in the regression model.
Cook’s distance is algebraically equivalent to the following expression:
where ei is the ith residual.
See Also
GeneralizedLinearModel
| LinearModel
| nlinfit
| fitnlm
| predict
Abrir ejemplo
Tiene una versión modificada de este ejemplo. ¿Desea abrir este ejemplo con sus modificaciones?
Comando de MATLAB
Ha hecho clic en un enlace que corresponde a este comando de MATLAB:
Ejecute el comando introduciéndolo en la ventana de comandos de MATLAB. Los navegadores web no admiten comandos de MATLAB.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)