Documentación

Esta página aún no se ha traducido para esta versión. Puede ver la versión más reciente de esta página en inglés.

# net

Clase: qrandset

Generate quasi-random point set

## Sintaxis

```X = net(p,n) ```

## Description

`X = net(p,n)` returns the first `n` points `X` from the point set `p` of the `qrandset` class. `X` is `n`-by-d, where d is the dimension of the point set.

Objects `p` of the `@qrandset` class encapsulate properties of a specified quasi-random sequence. Values of the point set are not generated and stored in memory until `p` is accessed using `net` or parenthesis indexing.

## Examples

Use `haltonset` to generate a 3-D Halton point set, skip the first 1000 values, and then retain every 101st point:

```p = haltonset(3,'Skip',1e3,'Leap',1e2) p = Halton point set in 3 dimensions (8.918019e+013 points) Properties: Skip : 1000 Leap : 100 ScrambleMethod : none```

Use `scramble` to apply reverse-radix scrambling:

```p = scramble(p,'RR2') p = Halton point set in 3 dimensions (8.918019e+013 points) Properties: Skip : 1000 Leap : 100 ScrambleMethod : RR2```

Use `net` to generate the first four points:

```X0 = net(p,4) X0 = 0.0928 0.6950 0.0029 0.6958 0.2958 0.8269 0.3013 0.6497 0.4141 0.9087 0.7883 0.2166```

Use parenthesis indexing to generate every third point, up to the 11th point:

```X = p(1:3:11,:) X = 0.0928 0.6950 0.0029 0.9087 0.7883 0.2166 0.3843 0.9840 0.9878 0.6831 0.7357 0.7923```