# gegenbauerC

Gegenbauer polynomials

## Syntax

``gegenbauerC(n,a,x)``

## Description

example

````gegenbauerC(n,a,x)` represents the `n`th-degree Gegenbauer (ultraspherical) polynomial with parameter `a` at the point `x`.```

## Examples

### First Four Gegenbauer Polynomials

Find the first four Gegenbauer polynomials for the parameter `a` and variable `x`.

```syms a x gegenbauerC([0, 1, 2, 3], a, x)```
```ans = [ 1, 2*a*x, (2*a^2 + 2*a)*x^2 - a,... ((4*a^3)/3 + 4*a^2 + (8*a)/3)*x^3 + (- 2*a^2 - 2*a)*x]```

### Gegenbauer Polynomials for Numeric and Symbolic Arguments

Depending on its arguments, `gegenbauerC` returns floating-point or exact symbolic results.

Find the value of the fifth-degree Gegenbauer polynomial for the parameter `a = 1/3` at these points. Because these numbers are not symbolic objects, `gegenbauerC` returns floating-point results.

`gegenbauerC(5, 1/3, [1/6, 1/4, 1/3, 1/2, 2/3, 3/4])`
```ans = 0.1520 0.1911 0.1914 0.0672 -0.1483 -0.2188```

Find the value of the fifth-degree Gegenbauer polynomial for the same numbers converted to symbolic objects. For symbolic numbers, `gegenbauerC` returns exact symbolic results.

`gegenbauerC(5, 1/3, sym([1/6, 1/4, 1/3, 1/2, 2/3, 3/4]))`
```ans = [ 26929/177147, 4459/23328, 33908/177147, 49/729, -26264/177147, -7/32]```

### Evaluate Chebyshev Polynomials with Floating-Point Numbers

Floating-point evaluation of Gegenbauer polynomials by direct calls of `gegenbauerC` is numerically stable. However, first computing the polynomial using a symbolic variable, and then substituting variable-precision values into this expression can be numerically unstable.

Find the value of the 500th-degree Gegenbauer polynomial for the parameter `4` at `1/3` and `vpa(1/3)`. Floating-point evaluation is numerically stable.

```gegenbauerC(500, 4, 1/3) gegenbauerC(500, 4, vpa(1/3))```
```ans = -1.9161e+05 ans = -191609.10250897532784888518393655```

Now, find the symbolic polynomial ```C500 = gegenbauerC(500, 4, x)```, and substitute `x = vpa(1/3)` into the result. This approach is numerically unstable.

```syms x C500 = gegenbauerC(500, 4, x); subs(C500, x, vpa(1/3))```
```ans = -8.0178726380235741521208852037291e+35```

Approximate the polynomial coefficients by using `vpa`, and then substitute `x = sym(1/3)` into the result. This approach is also numerically unstable.

`subs(vpa(C500), x, sym(1/3))`
```ans = -8.1125412405858470246887213923167e+36```

### Plot Gegenbauer Polynomials

Plot the first five Gegenbauer polynomials for the parameter `a = 3`.

```syms x y fplot(gegenbauerC(0:4,3,x)) axis([-1 1 -10 10]) grid on ylabel('G_n^3(x)') title('Gegenbauer polynomials') legend('G_0^3(x)', 'G_1^3(x)', 'G_2^3(x)', 'G_3^3(x)', 'G_4^3(x)',... 'Location', 'Best')```

## Input Arguments

collapse all

Degree of the polynomial, specified as a nonnegative integer, symbolic variable, expression, or function, or as a vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.

Parameter, specified as a nonnegative integer, symbolic variable, expression, or function, or as a vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.

Evaluation point, specified as a number, symbolic number, variable, expression, or function, or as a vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.

## More About

collapse all

### Gegenbauer Polynomials

• Gegenbauer polynomials are defined by this recursion formula.

`$G\left(0,a,x\right)=1,\text{ }G\left(1,a,x\right)=2ax,\text{ }G\left(n,a,x\right)=\frac{2x\left(n+a-1\right)}{n}G\left(n-1,a,x\right)-\frac{n+2a-2}{n}G\left(n-2,a,x\right)$`

• For all real a > -1/2, Gegenbauer polynomials are orthogonal on the interval -1 ≤ x ≤ 1 with respect to the weight function $w\left(x\right)={\left(1-{x}^{2}\right)}^{a-\frac{1}{2}}$.

• Chebyshev polynomials of the first and second kinds are a special case of the Gegenbauer polynomials.

`$T\left(n,x\right)=\frac{n}{2}G\left(n,0,x\right)$`
`$U\left(n,x\right)=G\left(n,1,x\right)$`
• Legendre polynomials are also a special case of the Gegenbauer polynomials.

`$P\left(n,x\right)=G\left(n,\frac{1}{2},x\right)$`

## Tips

• `gegenbauerC` returns floating-point results for numeric arguments that are not symbolic objects.

• `gegenbauerC` acts element-wise on nonscalar inputs.

• All nonscalar arguments must have the same size. If one or two input arguments are nonscalar, then `gegenbauerC` expands the scalars into vectors or matrices of the same size as the nonscalar arguments, with all elements equal to the corresponding scalar.

## References

[1] Hochstrasser, U. W. “Orthogonal Polynomials.” Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

## See Also

#### Mathematical Modeling with Symbolic Math Toolbox

Get examples and videos