Main Content

jacobiDS

Jacobi DS elliptic function

Description

example

jacobiDS(u,m) returns the Jacobi DS Elliptic Function of u and m. If u or m is an array, then jacobiDS acts element-wise.

Examples

collapse all

jacobiDS(2,1)
ans =
    0.2757

Call jacobiDS on array inputs. jacobiDS acts element-wise when u or m is an array.

jacobiDS([2 1 -3],[1 2 3])
ans =
    0.2757    0.4623   -0.0079

Convert numeric input to symbolic form using sym, and find the Jacobi DS elliptic function. For symbolic input where u = 0 or m = 0 or 1, jacobiDS returns exact symbolic output.

jacobiDS(sym(2),sym(1))
ans =
1/sinh(2)

Show that for other values of u or m, jacobiDS returns an unevaluated function call.

jacobiDS(sym(2),sym(3))
ans =
jacobiDS(2, 3)

For symbolic variables or expressions, jacobiDS returns the unevaluated function call.

syms x y
f = jacobiDS(x,y)
f =
jacobiDS(x, y)

Substitute values for the variables by using subs, and convert values to double by using double.

f = subs(f, [x y], [3 5])
f =
jacobiDS(3, 5)
fVal = double(f)
fVal =
   32.0302

Calculate f to higher precision using vpa.

fVal = vpa(f)
fVal =
32.030154607596772037587224629884

Plot the Jacobi DS elliptic function using fcontour. Set u on the x-axis and m on the y-axis by using the symbolic function f with the variable order (u,m). Fill plot contours by setting Fill to on.

syms f(u,m)
f(u,m) = jacobiDS(u,m);
fcontour(f,'Fill','on')
title('Jacobi DS Elliptic Function')
xlabel('u')
ylabel('m')

Figure contains an axes object. The axes object with title Jacobi DS Elliptic Function contains an object of type functioncontour.

Input Arguments

collapse all

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

More About

collapse all

Jacobi DS Elliptic Function

The Jacobi DS elliptic function is

ds(u,m) = dn(u,m)/sn(u,m)

where dn and sn are the respective Jacobi elliptic functions.

The Jacobi elliptic functions are meromorphic and doubly periodic in their first argument with periods 4K(m) and 4iK'(m), where K is the complete elliptic integral of the first kind, implemented as ellipticK.

Introduced in R2017b