Which is the smallest natural number n to which it applies a(n)>10?

1 visualización (últimos 30 días)
I have recursive sequence a(i)= a(i-1) + a(i-2)^(-1), where is a(1) and a(2) equals 1. So I have to find smallest natural number n to which it applies a(n)>10.
This is my code so far:
a = zeros(1,15);
a(1) = 1;
a(2) = 1;
for i = 3:15
a(i)= a(i-1) + a(i-2)^(-1);
end
Any help?
  2 comentarios
Stephen23
Stephen23 el 18 de Nov. de 2021
@Nikodin Sedlarevic: that recursive sequence does not use b anywhere. What is b for?

Iniciar sesión para comentar.

Respuesta aceptada

David Hill
David Hill el 18 de Nov. de 2021
a(1)=1;a(2)=1;
for k=3:1000 %pick something to overshoot or use while loop
a(k)=a(k-1)+1/a(k-2);
end
n=find(a>10,1);%48!

Más respuestas (1)

John D'Errico
John D'Errico el 18 de Nov. de 2021
Editada: John D'Errico el 18 de Nov. de 2021
The obvious answer is brute force, thus...
a_i = 1;
a_iplus1 = 1;
plot(a_i,a_iplus1,'o')
hold on
iter = 2;
imax = 1e6;
while (a_iplus1 < 10) && (iter < imax)
iter = iter + 1;
[a_i,a_iplus1] = deal(a_iplus1,a_iplus1 + 1/a_i);
plot(a_i,a_iplus1,'o')
end
grid on
xlabel a_i
ylabel a_iplus1
a_iplus1
a_iplus1 = 10.0922
iter
iter = 48
So when iter = 48, a finally grows larger than 10.
Note that I wrote the code so that no arrays are grown. This is important, since the loop might have gone on forever. This is why I put an upper limit on the loop. The trick using deal to advance the terms is well, just a cute trick.
Does a general analytical solution to this nonlinear difference equation exist? Possibly. Such nonlinear difference equations tend to have "interesting" behaviour. As soon as you dive into the domain of the nonlinear, things can go straight to well, you know where. The plot however, suggests a simple asymptotic behavior, one that makes sense when you look at the expression. Questions now come up, like is there a limiting value? Or will a(i) grow forever, unbounded?

Categorías

Más información sobre Loops and Conditional Statements en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by