Which is the smallest natural number n to which it applies a(n)>10?
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
Nikodin Sedlarevic
el 18 de Nov. de 2021
Editada: John D'Errico
el 18 de Nov. de 2021
I have recursive sequence a(i)= a(i-1) + a(i-2)^(-1), where is a(1) and a(2) equals 1. So I have to find smallest natural number n to which it applies a(n)>10.
This is my code so far:
a = zeros(1,15);
a(1) = 1;
a(2) = 1;
for i = 3:15
a(i)= a(i-1) + a(i-2)^(-1);
end
Any help?
2 comentarios
Stephen23
el 18 de Nov. de 2021
@Nikodin Sedlarevic: that recursive sequence does not use b anywhere. What is b for?
Respuesta aceptada
David Hill
el 18 de Nov. de 2021
a(1)=1;a(2)=1;
for k=3:1000 %pick something to overshoot or use while loop
a(k)=a(k-1)+1/a(k-2);
end
n=find(a>10,1);%48!
0 comentarios
Más respuestas (1)
John D'Errico
el 18 de Nov. de 2021
Editada: John D'Errico
el 18 de Nov. de 2021
The obvious answer is brute force, thus...
a_i = 1;
a_iplus1 = 1;
plot(a_i,a_iplus1,'o')
hold on
iter = 2;
imax = 1e6;
while (a_iplus1 < 10) && (iter < imax)
iter = iter + 1;
[a_i,a_iplus1] = deal(a_iplus1,a_iplus1 + 1/a_i);
plot(a_i,a_iplus1,'o')
end
grid on
xlabel a_i
ylabel a_iplus1
a_iplus1
iter
So when iter = 48, a finally grows larger than 10.
Note that I wrote the code so that no arrays are grown. This is important, since the loop might have gone on forever. This is why I put an upper limit on the loop. The trick using deal to advance the terms is well, just a cute trick.
Does a general analytical solution to this nonlinear difference equation exist? Possibly. Such nonlinear difference equations tend to have "interesting" behaviour. As soon as you dive into the domain of the nonlinear, things can go straight to well, you know where. The plot however, suggests a simple asymptotic behavior, one that makes sense when you look at the expression. Questions now come up, like is there a limiting value? Or will a(i) grow forever, unbounded?
0 comentarios
Ver también
Categorías
Más información sobre Loops and Conditional Statements en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!