Note: I actually gave the input as -1 as an initial guess. The actual solution via vpasolve() is -.6....
fsolve giving error that solution is not finite and real. When I test using vpasolve() I get a solution, then I input the same solution and get same error of not finite/real.
3 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
c1 = 0.5176;
c2 = 116;
c3 = .4;
c4 = 0.4;
c5 = 5;
c6 =21;
c7 = .08;
c8 = .035;
syms lambda
for k = 1:600
theta = pitch.Data(k);
%cp(k) = c1*(c2/lambda - c3*theta -c5)*exp(c6/lambda);
cp(k) = c1*(c6*lambda + (-c4 - c3*(2.5 + theta) + c2*(1/(lambda + ...
c7*(2.5 + theta)) - c8/(1 + (2.5 + theta)^3)))/exp(c5*(1/(lambda + ...
c7*(2.5 + theta)) - c8/(1 + (2.5 + theta)^3))));
eqn(k) = cp(k)/(2*lambda^3) == 1e7*(ta_kf.Data(k))/(rho*pi*N^5*wr_kf.Data(k)^2);
tsr(k) = vpasolve(eqn(k),lambda);%
tsr_check(k) = fzero(@(lambda)cp(k),[-1 0]);
end
Respuestas (1)
Torsten
el 13 de Jun. de 2022
c1 = 0.5176;
c2 = 116;
c3 = .4;
c4 = 0.4;
c5 = 5;
c6 =21;
c7 = .08;
c8 = .035;
syms lambda
for k = 1:600
theta = pitch.Data(k);
%cp(k) = c1*(c2/lambda - c3*theta -c5)*exp(c6/lambda);
cp(k) = c1*(c6*lambda + (-c4 - c3*(2.5 + theta) + c2*(1/(lambda + ...
c7*(2.5 + theta)) - c8/(1 + (2.5 + theta)^3)))/exp(c5*(1/(lambda + ...
c7*(2.5 + theta)) - c8/(1 + (2.5 + theta)^3))));
eqn(k) = cp(k)/(2*lambda^3) == 1e7*(ta_kf.Data(k))/(rho*pi*N^5*wr_kf.Data(k)^2);
tsr(k) = vpasolve(eqn(k),lambda);%
expr = cp(k)/(2*lambda^3) - 1e7*(ta_kf.Data(k))/(rho*pi*N^5*wr_kf.Data(k)^2);
fun = matlabFunction(expr,'Vars',lambda);
tsr_check(k) = fzero(fun,[-1 0]);
end
8 comentarios
Torsten
el 13 de Jun. de 2022
@Gordon comment moved here:
fsolve() is not a good enough solver in this situation because of the rate of change of the data. Therefore, vpasolve() needed to be used. The reason for trying to implement fsolve is because simulink does not allow vpasolve() a solution therefore is to use code.extrinsic() to implement function including vpasolve().
Torsten
el 13 de Jun. de 2022
Editada: Torsten
el 13 de Jun. de 2022
If the solution for index k is "near" to the solution of index k-1, it is usually a good idea to take the solution of step k-1 as initial guess for the solution of index k. Something like
c1 = 0.5176;
c2 = 116;
c3 = .4;
c4 = 0.4;
c5 = 5;
c6 =21;
c7 = .08;
c8 = .035;
tsr_guess = 1.0;
syms lambda
for k = 1:600
theta = pitch.Data(k);
%cp(k) = c1*(c2/lambda - c3*theta -c5)*exp(c6/lambda);
cp(k) = c1*(c6*lambda + (-c4 - c3*(2.5 + theta) + c2*(1/(lambda + ...
c7*(2.5 + theta)) - c8/(1 + (2.5 + theta)^3)))/exp(c5*(1/(lambda + ...
c7*(2.5 + theta)) - c8/(1 + (2.5 + theta)^3))));
eqn(k) = cp(k)/(2*lambda^3) == 1e7*(ta_kf.Data(k))/(rho*pi*N^5*wr_kf.Data(k)^2);
tsr(k) = vpasolve(eqn(k),lambda);%
expr = cp(k)/(2*lambda^3) - 1e7*(ta_kf.Data(k))/(rho*pi*N^5*wr_kf.Data(k)^2);
fun = matlabFunction(expr,'Vars',lambda);
tsr_check(k) = fsolve(fun,tsr_guess);
tsr_guess = tsr_check(k);
end
Ver también
Categorías
Más información sobre Symbolic Math Toolbox en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!