error from a relationship
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Mary292
el 21 de Feb. de 2015
Comentada: Star Strider
el 4 de Mzo. de 2015
oahfidsigbosga igoahaighaoeighoaw lagihsgibsohgaiesubg \suigh\seugbeisugi\seubvieu usgziseugbisu\bgzdbgz zgbzdsgubgisugziu fu\iesgi\eliueg\zjxbvkzsdbgi khifsohi\eg
1 comentario
Star Strider
el 4 de Mzo. de 2015
Context: ‘Mary292’ originally asked how to determine the error with respect to a linear regression applied to perturbed data with a model derived from unperturbed data on the same system. The system was initially unperturbed (the first 2000 data pairs, on which the regression was performed), then perturbed.
Respuesta aceptada
Star Strider
el 21 de Feb. de 2015
Your model is the linear regression of the first 2000 points. To get the model predictions for the rest of the data, ‘plug in’ the values for your independent variable for the rest of your data in your model. The output of your model are the predictions for those values. To get the error, subtract your predictions from the dependent variable data for those same values of the independent variable.
To illustrate:
x = linspace(0,200); % Create Data
y1 = 0.5*x(1:50) + 0.1*randn(1,50) + 1.2; % Create Data To Fit
y2 = 0.6*x(51:100) + 0.1*randn(1,50) + 1.5; % Create Data To Evaluate Error
b = polyfit(x(1:50), y1, 1); % Parameter Estimates
yfit = polyval(b, x); % Predict Entire Data Set
model_error = yfit - [y1 y2]; % Calculate Error
figure(1)
plot(x, [y1 y2], 'xr')
hold on
plot(x, yfit, '-b')
hold off
grid
legend('Data', 'Model Fit', 'Location','SE')
5 comentarios
Más respuestas (0)
Ver también
Categorías
Más información sobre Linear and Nonlinear Regression en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!