quadgk AbsTol/RelTol parameters combinations

1 visualización (últimos 30 días)
Alejandro
Alejandro el 14 de Abr. de 2025
Comentada: Alejandro el 19 de Abr. de 2025
Dear network.
I am having trouble getting the desired result of an integral involving Bessel functions Jo and Yo.
Need your help with a powerful set of combinations of the AbsTol/RelTol parameters that will help me get a low-error result
This is the equation I am trying to solve, with t as a parameter:
  2 comentarios
Torsten
Torsten el 15 de Abr. de 2025
What is "the desired result" ? Do you have integral values of high precision to compare with ?
Alejandro
Alejandro el 15 de Abr. de 2025
Hi Torsten, yes.
I have figures from various papers and books to compare with.
The current results I am obtaining in MATLAB using either the quadgk or integral commands are off by +- 10%, which requires an optimization of the AbsTol/RelTol parameters.

Iniciar sesión para comentar.

Respuestas (1)

Torsten
Torsten el 15 de Abr. de 2025
Editada: Torsten el 15 de Abr. de 2025
umin = 1e-16;
f = @(t,u) exp(-t*u.^2)./(u.*(besselj(0,u).^2+bessely(0,u).^2));
g = @(u) pi/2 * atan((2*double(eulergamma)-log(4)+2*log(u))/pi);
qD = @(t) 1 + 4/pi^2*( g(umin) + quadgk(@(u)f(t,u),umin,Inf) );
format long
t = 0.1:0.1:10;
plot(t,arrayfun(@(t)qD(t),t))
xlabel('t')
ylabel('qD')
grid on
  3 comentarios
Torsten
Torsten el 16 de Abr. de 2025
Editada: Torsten el 16 de Abr. de 2025
Consider
syms u
f = u*(bessely(0,u)^2+1);
f = 
series(f)
ans = 
g = u*(4*(eulergamma-log(sym('2'))+log(u))^2/sym(pi)^2+1)
g = 
int(1/g)
ans = 
Limit for int(1/g) as u -> 0+ is pi/2 * atan(-Inf) = -pi^2/4.
Thus for f(t,u) = exp(-t*u.^2)./(u.*(besselj(0,u).^2+bessely(0,u).^2)) I computed
int(f,0,Inf) = int(f,0,umin) + int(f,umin,Inf) ~ int(1/g,0,umin) + int(f,umin,Inf) = pi/2*atan((2*eulergamma-log(4)+2*log(umin))/pi) + pi^2/4 + int(f,umin,Inf)
Now multiply by 4/pi^2 to get qD.
Alejandro
Alejandro el 19 de Abr. de 2025
Thanks for your useful feedback Torsten. Will generate the values and compere against my reference tables.

Iniciar sesión para comentar.

Categorías

Más información sobre Special Functions en Help Center y File Exchange.

Productos


Versión

R2024b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by