What Magnitude(db) and Phase(deg) represent on Bode Diagram?

31 visualizaciones (últimos 30 días)
Bob
Bob el 31 de Mzo. de 2016
Comentada: Star Strider el 4 de Abr. de 2016
What Magnitude(db) and Phase(deg) represent on Bode Diagram?
I am working on 2 DOF System and I want to understand some basic things.
%%Parameters
m1 = 2500; % (kg)
m2 = 320; % (kg)
k1 = 80000; % (N/m)
k2 = 500000; % (N/m)
b1 = 350; % (N*s/m)
b2 = 15020; % (N*s/m)
%%Transfer Function
num1 = [(0) (-m1*b2) (-m1*k2) (0) (0)];
den1 = [(m1*m2) (m1*b1+m1*b2+m2*b1) (m1*k1+m1*k2+m2*k1+b1*b2) (b1*k2+k1*b2) (k1*k2)];
G1 = tf(num1,den1); % G1(s) = (x1(s)-x2(s))/w(s)
Below you can see the Transfer Function and Bode Diagram results.
G1(s) = (x1(s)-x2(s))/w(s)
Magnitude 26.4269 (dB) - Resonant Frequency 5.2493 (rad/s)
Magnitude 2.2837 (dB) - Resonant Frequency 37.8886 (rad/s)
I can't understand what exactly these values mean.
For instance the first peak represent the vibration of the numerator x1(s)-x2(s) and the second peak the vibration of the denominator w(s)?
Magnitude(db) is the volume? the high level of vibration of my system?
Aim is possitive or negative Magnitude(db) for my system?
and what about Phase (deg)?
%%Parameters
m1 = 2500; % (kg)
m2 = 320; % (kg)
k1 = 80000; % (N/m)
k2 = 500000; % (N/m)
b1 = 350; % (N*s/m)
b2 = 15020; % (N*s/m)
%%Transfer Function
num1 = [(0) (-m1*b2) (-m1*k2) (0) (0)];
den1 = [(m1*m2) (m1*b1+m1*b2+m2*b1) (m1*k1+m1*k2+m2*k1+b1*b2) (b1*k2+k1*b2) (k1*k2)];
G1 = tf(num1,den1); % G1(s) = (x1(s)-x2(s))/w(s)
%%Bode Plot (Magnitude dB - Frequency rad/s)
bode(G1)
grid on;

Respuesta aceptada

Star Strider
Star Strider el 31 de Mzo. de 2016
Both peaks represent complex zeros (roots) of the denominator polynomial (in a transfer function), called poles. (The amplitude will go toward zero in the region of the complex roots of the numerator polynomial, called zeros.) Those roots occur at a particular complex resonant frequency, so looking at them projected on the complex frequency axis (and not the rest of the complex plane), they will have particular magnitudes (here, amplitudes of oscillation of the two masses) at the associated frequencies (frequencies of oscillation of the two masses).
  16 comentarios
Bob
Bob el 4 de Abr. de 2016
I found the command bodeplot that convert the units from db to abs. The abs units are meter (m)? If yes then this is what I want to. To be honest this looks like a FFT diagram? I have confused since my knowledge is limited. Anyway, thanks for your help and sorry for bothering you all the time.
P = bodeoptions;
P.MagScale = 'linear';
P.MagUnits = 'abs';
bodeplot(G1,P)
grid on;
Star Strider
Star Strider el 4 de Abr. de 2016
My pleasure.
No worries — I needed to review some of these functions, and you gave me the opportunity. This is obviously a homework assignment, so I was reluctant to offer too much help. That would give you an unfair advantage.
The bodeplot function lets you change some of the parameters of the plot that the bode function does not.

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Plot Customization en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by