second order finite difference scheme
6 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Margaret Winding
el 21 de Feb. de 2017
Comentada: Rena Berman
el 14 de Mayo de 2020
I am given data t=[0 1 2 3 4 5] and y(t)=[1 2.7 5.8 6.6 7.5 9.9] and have to evaluate the derivative of y at each given t value using the following finite difference schemes.
(y(t+h)−y(t−h))/2h =y′(t)+O(h^2)
(−y(t+2h)+4y(t+h)−3y(t))/2h =y′(t)+O(h^2)
(y(t−2h)−4y(t−h)+3y(t))/2h =y′(t)+O(h^2)
I started the code, but I haven't learned what to do in the second order case. This what I have so far for the first given equation:
t= 0: 1: 5;
y(t)= [1 2.7 5.8 6.6 7.5 9.9];
n=length(y);
dfdx=zeros(n,1);
dfdx(t)=(y(2)-y(1))/(t(2)-t(1));
for i=2:n-1
dfdx(1)=(y(i+1)-y(i-1))/(t(i+1)-t(i-1));
end
dfdx(n)=(y(n)-y(n-1))/(t(n)-t(n-1));
the error that returns is "Subscript indices must either be real positive integers or logicals." referencing my use of y(t). How do I fix this to make my code correct?
1 comentario
Respuesta aceptada
Chad Greene
el 21 de Feb. de 2017
There's no need for the (t) when you define y(t). Same with dfdx. Also, make sure you change dfdx(1) in the loop to dfdx(i).
t= 0: 1: 5;
y= [1 2.7 5.8 6.6 7.5 9.9];
n=length(y);
dfdx=zeros(n,1);
dfdx=(y(2)-y(1))/(t(2)-t(1));
for i=2:n-1
dfdx(i)=(y(i+1)-y(i-1))/(t(i+1)-t(i-1));
end
dfdx(n)=(y(n)-y(n-1))/(t(n)-t(n-1));
6 comentarios
Más respuestas (0)
Ver también
Categorías
Más información sobre Scope Variables and Generate Names en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!