How to solve a differential equation with non-constant coefficients

9 visualizaciones (últimos 30 días)
arbia haded
arbia haded el 8 de Jun. de 2017
Comentada: darova el 16 de Mayo de 2020
Hi all
I have equation like this dy/dx = a(x)*y + b
where : a(x) is non constant (a=1/x) and b is a vector (10000 rows)
how can I solve this equation using matlab !!
Someone answer me plz

Respuestas (3)

Torsten
Torsten el 8 de Jun. de 2017
Take a look at the example
ODE with Time-Dependent Terms
under
https://de.mathworks.com/help/matlab/ref/ode45.html
Best wishes
Torsten.
  4 comentarios
arbia haded
arbia haded el 12 de Jun. de 2017
hi Torsten b is not dependent on x here is my code :
a = @(x) 1/x;
xdomain = [1 100];
%b = rand(10000,1);% aléatoire
load ('Bx');
load ('By');
load ('Bz');
b= sqrt(Bx.^2+By.^2+Bz.^2);
y = ones(10000,1);
[x,y] = ode45(@(x,y,a,b) a(x)*y - b ,rdomain,y,[],a,b);
plot(x,y)
Torsten
Torsten el 13 de Jun. de 2017
So you want to solve the ODE
y'=y/x-sqrt(Bx^2+By^2+Bz^2)
for all combinations (Bx,By,Bz) from your loaded arrays ?
Then use a loop over the length of Bx:
a = @(x) 1/x;
xdomain = linspace(1,100,10);
y0=1;
%b = rand(10000,1);% aléatoire
load ('Bx');
load ('By');
load ('Bz');
for i=1:numel(Bx)
f=@(x,y) a(x)*y-sqrt(Bx(i)^2+By(i)^2+Bz(i)^2);
[x,y]=ode45(f,xdomain,y0);
yvec(i,:)=y(:);
end
Best wishes
Torsten.

Iniciar sesión para comentar.


arbia haded
arbia haded el 13 de Jun. de 2017
hi Torsten Thank u very much for your help :) Yesterday I tried to simplify the problem, so I started with a very simple sinusoidal signal of the following form: b = A sin (2 pi f t), I calculated the solution of this equation analytically , I found this expression : y(x,t) = -A x pi f cos (2 pi f t), It is clear that the solution has a sinusoidal shape. But when I switched to the solution with matlab I didn't get the right solution. here is my code :
if true
A =1.25; % amplitude de la sinusoide
f =50; % frequence de la sinusoide
Fe =5000; % fréquence d'échantillonnage
t=0:1/ Fe :0.3; % base temps discretisée
B=A*sin (2* pi*f*t); % sinusoide à temps discret
b=diff(B)./diff(t); % dérivé
figure (1)
subplot(2,2,1),plot (B,'r') % affichage de la courbe
title ('signal sinusoidal')
grid on
subplot(2,2,2),plot(b,'m')
title ('la dérivée')
grid on
a = @(x) 1/x;
xdomain = linspace(1,100,10);
y0=1;
for i=1:numel(b)
f=@(x,y) -a(x)*y-b(i);
[x,y]=ode45(f,xdomain,y0);
yvec(i,:)=y(:);
end
subplot(2,2,3), plot(x,y)
end
Here I took the derivative of b as a second member (In reality I need the signal derivative). As an attachment you will find the result of simulation.

Francisco Rosales
Francisco Rosales el 15 de Mayo de 2020
Hi all
I have equation like this Az'(t) = Bz(t)+ b
how can I solve this equation using matlab !!
Someone answer me plz
Thaks
Grace

Categorías

Más información sobre Mathematics en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by