Solve Partial Differential Equation
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
Let D=(d/dx+fn d/dy) fn=f(xn,yn) Then, Df=(d/dx+fn d/dy)f=fx+ffy D2f=(d/dx+fd/dy)^2 f(xn,yn) =(d/dx+f d/dy) (fx + ffy) Then, how can I find D4f using MATLAB?
0 comentarios
Respuestas (1)
SAI SRUJAN
el 27 de Mzo. de 2024
Hi soe,
I understand that you are trying to solve a partial differential equation.
To find 'D4f' using MATLAB, you can use the Symbolic Math Toolbox. Please go through the following code snippet to proceed further,
syms x y f
fn = f(x, y);
D = diff(f, x) + fn * diff(f, y);
D2 = diff(D, x) + fn * diff(D, y);
D3 = diff(D2, x) + fn * diff(D2, y);
D4 = diff(D3, x) + fn * diff(D3, y);
In this code, we define the symbolic variables 'x', 'y', and 'f'. Then, we define 'fn' as a function of 'x' and 'y'. We calculate 'D'and we continue this process to calculate 'D2', 'D3', and finally 'D4', which represents the fourth derivative of 'f' with respect to 'x' and 'y'.
For a comprehensive understanding of the 'diff' function in MATLAB, please refer to the following documentation.
I hope this helps!
0 comentarios
Ver también
Categorías
Más información sobre Calculus en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!