Multi step ahead forecasting with LSTM

14 visualizaciones (últimos 30 días)
anurag kulshrestha
anurag kulshrestha el 7 de Feb. de 2020
Comentada: Raziye Ghasemi el 22 de Nov. de 2023
How to perform multi-step ahead forecasting with LSTM. I want to predict 2,3, and 4 time stesp ahead prediction with LSTM?
Please help. Thanks in advance.
  2 comentarios
Nikolaos Efkarpidis
Nikolaos Efkarpidis el 13 de En. de 2021
Dear,
How did you finally perform multi-step ahead forecasting with LSTM and predictAndUpdateState ?
I am also struggling with this issue.
Best regards,
Nick
Raziye Ghasemi
Raziye Ghasemi el 22 de Nov. de 2023

How did you finally perform multi-step ahead forecasting with LSTM and predictAndUpdateState ? I am also struggling with this issue.

Iniciar sesión para comentar.

Respuesta aceptada

adel adel
adel adel el 25 de Mayo de 2020
Forecasting is basicaly sequence-to-sequence regression, let suppos that your entire sequence is data,
1. You divide data into train and test parts, you can specify the proportion as you wish:
numTimeStepsTrain = floor(0.9*numel(data));% 90% for training 10%for testing
dataTrain = data(1:numTimeStepsTrain+1);
dataTest = data(numTimeStepsTrain+1:end);
2. Preparing training data and response sequences by shifting data by one time step, such as for data(t) the response will be data(t+1)
XTrain = dataTrain(1:end-1);
YTrain = dataTrain(2:end);
3. Preparing the network and training hyperparameters, then train the network using training data and training responses
numFeatures = 1;
numResponses = 1;
numHiddenUnits = 200;
layers = [ ...
sequenceInputLayer(numFeatures)
lstmLayer(numHiddenUnits)
fullyConnectedLayer(numResponses)
regressionLayer];
options = trainingOptions('adam', ...
'MaxEpochs',250, ...
'GradientThreshold',1, ...
'InitialLearnRate',0.005, ...
'Verbose',0, ...
'Plots','training-progress');
net = trainNetwork(XTrain,YTrain,layers,options);
3. Now you can forecast 1, 2, 3 or 4 steps ahead using predictAndUpdateState function, since you use predicted values to update the network state and you don’t use actual values contained in dataTest for this, you can make predictions on any time step number
net = predictAndUpdateState(net,XTrain);
[net,YPred] = predictAndUpdateState(net,YTrain(end));
stepsAhead = 4; % you can use 1,2,3,4 on any value of steps ahead
for i = 2:stepsAhead+1
[net,YPred(:,i)] = predictAndUpdateState(net,YPred(:,i-1));
end
  4 comentarios
Gordon Elgin
Gordon Elgin el 25 de Ag. de 2023
I have a question. I know that you can predict multi-time steps. However, how do we input say 5 timesteps to predict 1 time step ahead.
Kapila
Kapila el 2 de Nov. de 2023
Any answer for this?

Iniciar sesión para comentar.

Más respuestas (1)

David Willingham
David Willingham el 28 de Mzo. de 2022
Hi,
Please see this updated example in R2022a that shows multi-step ahead (closed loop) predictions:
  2 comentarios
Shawn Berry
Shawn Berry el 28 de Mzo. de 2022
Thanks!
nahed zemouri
nahed zemouri el 19 de Jun. de 2023
thanks

Iniciar sesión para comentar.

Categorías

Más información sobre Sequence and Numeric Feature Data Workflows en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by