Multi step ahead forecasting with LSTM
14 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
anurag kulshrestha
el 7 de Feb. de 2020
Comentada: Raziye Ghasemi
el 22 de Nov. de 2023
How to perform multi-step ahead forecasting with LSTM. I want to predict 2,3, and 4 time stesp ahead prediction with LSTM?
Please help. Thanks in advance.
2 comentarios
Nikolaos Efkarpidis
el 13 de En. de 2021
Dear,
How did you finally perform multi-step ahead forecasting with LSTM and predictAndUpdateState ?
I am also struggling with this issue.
Best regards,
Nick
Raziye Ghasemi
el 22 de Nov. de 2023
How did you finally perform multi-step ahead forecasting with LSTM and predictAndUpdateState ? I am also struggling with this issue.
Respuesta aceptada
adel adel
el 25 de Mayo de 2020
Forecasting is basicaly sequence-to-sequence regression, let suppos that your entire sequence is data,
1. You divide data into train and test parts, you can specify the proportion as you wish:
numTimeStepsTrain = floor(0.9*numel(data));% 90% for training 10%for testing
dataTrain = data(1:numTimeStepsTrain+1);
dataTest = data(numTimeStepsTrain+1:end);
2. Preparing training data and response sequences by shifting data by one time step, such as for data(t) the response will be data(t+1)
XTrain = dataTrain(1:end-1);
YTrain = dataTrain(2:end);
3. Preparing the network and training hyperparameters, then train the network using training data and training responses
numFeatures = 1;
numResponses = 1;
numHiddenUnits = 200;
layers = [ ...
sequenceInputLayer(numFeatures)
lstmLayer(numHiddenUnits)
fullyConnectedLayer(numResponses)
regressionLayer];
options = trainingOptions('adam', ...
'MaxEpochs',250, ...
'GradientThreshold',1, ...
'InitialLearnRate',0.005, ...
'Verbose',0, ...
'Plots','training-progress');
net = trainNetwork(XTrain,YTrain,layers,options);
3. Now you can forecast 1, 2, 3 or 4 steps ahead using predictAndUpdateState function, since you use predicted values to update the network state and you don’t use actual values contained in dataTest for this, you can make predictions on any time step number
net = predictAndUpdateState(net,XTrain);
[net,YPred] = predictAndUpdateState(net,YTrain(end));
stepsAhead = 4; % you can use 1,2,3,4 on any value of steps ahead
for i = 2:stepsAhead+1
[net,YPred(:,i)] = predictAndUpdateState(net,YPred(:,i-1));
end
4 comentarios
Gordon Elgin
el 25 de Ag. de 2023
I have a question. I know that you can predict multi-time steps. However, how do we input say 5 timesteps to predict 1 time step ahead.
Más respuestas (1)
David Willingham
el 28 de Mzo. de 2022
Hi,
Please see this updated example in R2022a that shows multi-step ahead (closed loop) predictions:
2 comentarios
Ver también
Categorías
Más información sobre Sequence and Numeric Feature Data Workflows en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!