Test | Status | Code Input and Output |
---|---|---|
1 | Pass |
%% Note
% The following properties are measured at room temperature and are tensile
% in a single direction. Some materials, such as metals are generally
% isotropic, whereas others, like composite are highly anisotropic
% (different properties in different directions). Also, property values can
% range depending on the material grade. Finally, thermal or environmental
% changes can alter these properties, sometimes drastically.
|
2 | Pass |
%% steel alloy (ASTM A36)
S_y = 250e6; %Pa
S_u = 400e6; %Pa
e_y = 0.00125;
e_u = 0.35;
nu = 0.26;
G = 79.3e9; %Pa
E = 200e9; %Pa
density = 7.85; %g/cm^3
sh_exp = 0.14; %strain-hardening exponent
sh_coeff = 0.463; %strain-hardening coefficient
assert(abs(stress_strain2(S_y,e_y)-1.5625e5)/1.5625e5<5e-2)
ans =
156250
|
3 | Pass |
%% titanium (Ti-6Al-4V)
S_y = 830e6; %Pa
S_u = 900e6; %Pa
e_y = 0.00728;
e_u = 0.14;
nu = 0.342;
G = 44e9; %Pa
E = 114e9; %Pa
density = 4.51; %g/cm^3
sh_exp = 0.04; %strain-hardening exponent
sh_coeff = 0.974; %strain-hardening coefficient
assert(abs(stress_strain2(S_y,e_y)-3.0212e6)/3.0212e6<5e-2)
ans =
3021200
|
4 | Pass |
%% Inconel 718
S_y = 1172e6; %Pa
S_u = 1407e6; %Pa
e_y = 0.00563;
e_u = 0.027;
nu = 0.29;
G = 11.6e9; %Pa
E = 208e9; %Pa
density = 8.19; %g/cm^3
sh_exp = 0.075; %strain-hardening exponent
sh_coeff = 1.845; %strain-hardening coefficient
assert(abs(stress_strain2(S_y,e_y)-3.29918e6)/3.29918e6<5e-2)
ans =
3.2992e+06
|
5 | Pass |
%% aluminum alloy (6061-T6)%^&
S_y = 241e6; %Pa
S_u = 300e6; %Pa
e_y = 0.0035;
e_u = 0.15;
nu = 0.33;
G = 26e9; %Pa
E = 68.9e9; %Pa
density = 2.7; %g/cm^3
sh_exp = 0.042; %strain-hardening exponent
sh_coeff = 0.325; %strain-hardening coefficient
assert(abs(stress_strain2(S_y,e_y)-4.2175e5)/4.2175e5<5e-2)
ans =
421750
|
6 | Pass |
%% copper
S_y = 70e6; %Pa
S_u = 220e6; %Pa
e_y = 0.00054;
e_u = 0.48;
nu = 0.34;
G = 48e9; %Pa
E = 130e9; %Pa
density = 8.92; %g/cm^3
sh_exp = 0.44; %strain-hardening exponent
sh_coeff = 0.304; %strain-hardening coefficient 530MPa
assert(abs(stress_strain2(S_y,e_y)-1.89e4)/1.89e4<5e-2)
ans =
18900
|
7 | Pass |
%% rhenium
S_y = 317e6; %Pa
S_u = 1130e6; %Pa
e_y = 0.000685;
e_u = 0.24;
nu = 0.3;
G = 178e9; %Pa
E = 463e9; %Pa
density = 21.02; %g/cm^3
sh_exp = 0.353; %strain-hardening exponent
sh_coeff = 1.870; %strain-hardening coefficient
assert(abs(stress_strain2(S_y,e_y)-1.085725e5)/1.085725e5<5e-2)
ans =
1.0857e+05
|
8 | Pass |
%% polymer (nylon, 6/6)
S_y = 82e6; %Pa
S_u = 82e6; %Pa
e_y = 0.0265;
e_u = 0.45;
nu = 0.41;
G = 2.8e9; %Pa
E = 3.5e-2; %Pa
density = 1.14; %g/cm^3
assert(abs(stress_strain2(S_y,e_y)-1.0865e6)/1.0865e6<5e-2)
ans =
1086500
|
9 | Pass |
%% polymer (nylon, 6/6) reinforced with 45wt.% glass fiber
S_y = 230e6; %Pa
S_u = 230e6; %Pa
e_y = 0.016;
e_u = 0.016;
nu = 0.35;
G = 13.0e9; %Pa
E = 14.5e9; %Pa
density = 1.51; %g/cm^3
assert(abs(stress_strain2(S_y,e_y)-1.84e6)/1.84e6<5e-2)
ans =
1840000
|
10 | Pass |
%% diamond
S_y = 1200e6; %Pa
S_u = 1200e6; %Pa
e_y = 0.001;
e_u = 0.001;
nu = 0.20;
G = 478e9; %Pa
E = 1200e9; %Pa
density = 3.51; %g/cm^3
assert(abs(stress_strain2(S_y,e_y)-6e5)/6e5<5e-2)
ans =
600000
|
11 | Pass |
%%
ind = randi(4);
switch ind
case 1
S_y = 250e6; %Pa
e_y = 0.00125;
assert(abs(stress_strain2(S_y,e_y)-1.5625e5)/1.5625e5<5e-2)
case 2
S_y = 82e6; %Pa
e_y = 0.0265;
assert(abs(stress_strain2(S_y,e_y)-1.0865e6)/1.0865e6<5e-2)
case 3
S_y = 241e6; %Pa
e_y = 0.0035;
assert(abs(stress_strain2(S_y,e_y)-4.2175e5)/4.2175e5<5e-2)
case 4
S_y = 1172e6; %Pa
e_y = 0.00563;
assert(abs(stress_strain2(S_y,e_y)-3.29918e6)/3.29918e6<5e-2)
end
ans =
3.2992e+06
|
12 | Pass |
%%
ind = randi(4);
switch ind
case 1
S_y = 1200e6; %Pa
e_y = 0.001;
assert(abs(stress_strain2(S_y,e_y)-6e5)/6e5<5e-2)
case 2
S_y = 1172e6; %Pa
e_y = 0.00563;
assert(abs(stress_strain2(S_y,e_y)-3.29918e6)/3.29918e6<5e-2)
case 3
S_y = 230e6; %Pa
e_y = 0.016;
assert(abs(stress_strain2(S_y,e_y)-1.84e6)/1.84e6<5e-2)
case 4
S_y = 250e6; %Pa
e_y = 0.00125;
assert(abs(stress_strain2(S_y,e_y)-1.5625e5)/1.5625e5<5e-2)
end
ans =
156250
|
13 | Pass |
%%
ind = randi(4);
switch ind
case 1
S_y = 830e6; %Pa
e_y = 0.00728;
assert(abs(stress_strain2(S_y,e_y)-3.0212e6)/3.0212e6<5e-2)
case 2
S_y = 230e6; %Pa
e_y = 0.016;
assert(abs(stress_strain2(S_y,e_y)-1.84e6)/1.84e6<5e-2)
case 3
S_y = 70e6; %Pa
e_y = 0.00054;
assert(abs(stress_strain2(S_y,e_y)-1.89e4)/1.89e4<5e-2)
case 4
S_y = 317e6; %Pa
e_y = 0.000685;
assert(abs(stress_strain2(S_y,e_y)-1.085725e5)/1.085725e5<5e-2)
end
ans =
1840000
|
9833 Solvers
Is my wife right? Now with even more wrong husband
1241 Solvers
67 Solvers
286 Solvers
26 Solvers
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!