Performance of fuzzy RBFNN using FCM and FSC

versión 1.0.4 (21.5 MB) por sumanta das
This code uses a fuzzy extension of RBFNN using Fuzzy c means clustering and Fuzzy Supervised Classification.

90 descargas

Actualizada 14 Oct 2021

Ver licencia

Handling mixed pixel is a common problem for both multi as well as hyperspectral satellite data. This code proposes a fuzzy extension of Radial Basis Function Neural Network for classification of satellite data. The proposed method first estimates fuzzy membership values of satellite data using fuzzy-c-means algorithm. Similarly fuzzy supervisedclassification is performed on the same sattelite image using ground truth samples. Then from both FCM and FSC classified data sample selected for RBFNN. The procedure for connecting the FCM and FSC through RBFNN is explained in the title image.
Three experiments are performed with multi and hyperspectral satellite data, namely, Indian Remote Sensing Satellite-1A, LANDSAT-TM (Thematic Mapper) and Airborne Visible Infrared Imaging Spectrometer (AVIRIS) to compare the proposed FCM-RBFNN-FSC with basic FCM and FSC.

Citar como

sumanta das (2022). Performance of fuzzy RBFNN using FCM and FSC (, MATLAB Central File Exchange. Recuperado .

Compatibilidad con la versión de MATLAB
Se creó con R2020a
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux
Etiquetas Añadir etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!