Fminspleas

Efficient nonlinear regression fitting using a constrained, partitioned least squares overlay to fmi
7,8K Descargas
Actualizado 23 jun 2008

Ver licencia

I need to thank Duane Hanselman for suggesting this great idea.

Fminspleas is a simple nonlinear least squares tool that fits regression models of the form

Y = a1*f1(X,C) + a2*f2(X,C) + ... + an*fn(X,C)

X can be any array, so it works on multidimensional
problems, and C is the set of only intrinsically nonlinear parameters. f1, f2, etc., must return a column vector result, of the same length as Y.

Because the optimization (in this case, fminsearch) need only work on the intrinsically nonlinear parameters, far fewer function evaluations are required. The example I give in the help took only 32 function evaluations to estimate 2 linear parameters plus 1 nonlinear parameter, versus over 300 evaluations had I just called fminsearch directly.

Fminspleas now allows you to specify bound constraints on the nonlinear parameters only. I'll see about adding linear parameter constraints if there are requests.

Finally, fminspleas allows the user to supply a set of non-negative weights to the regression.

E-mail me with any problems or bugs.

Citar como

John D'Errico (2024). Fminspleas (https://www.mathworks.com/matlabcentral/fileexchange/10093-fminspleas), MATLAB Central File Exchange. Recuperado .

Compatibilidad con la versión de MATLAB
Se creó con R14SP1
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux
Categorías
Más información sobre Least Squares en Help Center y MATLAB Answers.
Etiquetas Añadir etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versión Publicado Notas de la versión
1.0.0.0

Fix indexing in the nested function