shortest_distance( X, axis )
Compute The shortest distance(orthogonal distance) from a point to Ellipsoid or Hyperboloid
(x/a)^2+(y/b)^2+(z/c)^2=1 standart Ellipsoid equation centered at the origin
(x/a)^2+(y/b)^2-(z/c)^2=1 Standart Hyperboloid equation centered at the origin
Parameters:
* X, [x y z] - A point Cartesian coordinates data, n x 3 matrix or three n x 1 vectors
* axis,[a; b; c] - ellipsoid radii [a; b; c],its axes % along [x y z] axes
Output:
* Xo,[xo yo zo] - Cartesian coordinates of Point onto ellipsoid
* dis : shortest distance
negatif distance indicates that point PG remains in the ellipsoid
Author:
Sebahattin Bektas, 19 Mayis University, Samsun
sbektas@omu.edu.tr
How to cite this code:
BEKTAS, Sebahattin. Orthogonal distance from an ellipsoid. Bol. Ciênc. Geod. [online]. 2014, vol.20, n.4, pp. 970-983. ISSN 1982-2170.
BEKTAS, Sebahattin. Orthogonal (Shortest) Distance To the Hyperboloid,
International Journal of Research in Engineering and Applied Sciences(IJREAS)
Available online at http://euroasiapub.org/journals.php
Vol. 7 Issue 5, May-2017, pp. 37~45
ISSN (O): 2249-3905, ISSN(P): 2349-6525 |
Citar como
Sebahattin Bektas (2025). shortest_distance( X, axis ) (https://es.mathworks.com/matlabcentral/fileexchange/46261-shortest_distance-x-axis), MATLAB Central File Exchange. Recuperado .
Compatibilidad con la versión de MATLAB
Compatibilidad con las plataformas
Windows macOS LinuxCategorías
- Mathematics and Optimization > Mapping Toolbox > Geometric Geodesy >
- Radar > Mapping Toolbox > Geometric Geodesy >
Etiquetas
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Descubra Live Editor
Cree scripts con código, salida y texto formateado en un documento ejecutable.
| Versión | Publicado | Notas de la versión | |
|---|---|---|---|
| 1.5.0.0 | update
|
||
| 1.4.0.0 | figure added
|
||
| 1.3.0.0 | updated |
||
| 1.2.0.0 | revised |
||
| 1.1.0.0 | explain
|
||
| 1.0.0.0 |
