shortest_distance( X, axis )

The shortest distance(orthogonal distance) from a point to Ellipsoid or Hyperboloid
578 Descargas
Actualizado 8 jul 2017

Ver licencia

Compute The shortest distance(orthogonal distance) from a point to Ellipsoid or Hyperboloid
(x/a)^2+(y/b)^2+(z/c)^2=1 standart Ellipsoid equation centered at the origin
(x/a)^2+(y/b)^2-(z/c)^2=1 Standart Hyperboloid equation centered at the origin

Parameters:
* X, [x y z] - A point Cartesian coordinates data, n x 3 matrix or three n x 1 vectors
* axis,[a; b; c] - ellipsoid radii [a; b; c],its axes % along [x y z] axes

Output:
* Xo,[xo yo zo] - Cartesian coordinates of Point onto ellipsoid

* dis : shortest distance
negatif distance indicates that point PG remains in the ellipsoid
Author:
Sebahattin Bektas, 19 Mayis University, Samsun
sbektas@omu.edu.tr
How to cite this code:
BEKTAS, Sebahattin. Orthogonal distance from an ellipsoid. Bol. Ciênc. Geod. [online]. 2014, vol.20, n.4, pp. 970-983. ISSN 1982-2170.
BEKTAS, Sebahattin. Orthogonal (Shortest) Distance To the Hyperboloid,
International Journal of Research in Engineering and Applied Sciences(IJREAS)
Available online at http://euroasiapub.org/journals.php
Vol. 7 Issue 5, May-2017, pp. 37~45
ISSN (O): 2249-3905, ISSN(P): 2349-6525 |

Citar como

Sebahattin Bektas (2025). shortest_distance( X, axis ) (https://es.mathworks.com/matlabcentral/fileexchange/46261-shortest_distance-x-axis), MATLAB Central File Exchange. Recuperado .

Compatibilidad con la versión de MATLAB
Se creó con R2007b
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versión Publicado Notas de la versión
1.5.0.0

update
The file was generalized so that it could also calculate shortest distances to ellipsoid or hyperboloids.
update

1.4.0.0

figure added
explain

1.3.0.0

updated

1.2.0.0

revised

1.1.0.0

explain
dis=shortest distance

1.0.0.0