Divergence Theorem (Gauss’, Ostrogradsky’s) to Measure Flow

versión 1.0.0 (2.62 KB) por Roche de Guzman
Example showing that the volume integral of the divergence of f = surface integral of the magnitude of f normal to the surface (f dot n)

137 descargas

Actualizada 23 Feb 2019

Ver licencia

%% Divergence Theorem to Measure the Flow in a Control Volume (Rectangular Prism)
% Example Proof: flow = volume integral of the divergence of f (flux density*dV) = surface integral of the magnitude of f normal to the surface (f dot n) (flux*dS)
% by Prof. Roche C. de Guzman

Citar como

Roche de Guzman (2022). Divergence Theorem (Gauss’, Ostrogradsky’s) to Measure Flow (https://www.mathworks.com/matlabcentral/fileexchange/70371-divergence-theorem-gauss-ostrogradsky-s-to-measure-flow), MATLAB Central File Exchange. Recuperado .

Compatibilidad con la versión de MATLAB
Se creó con R2018b
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!