Main Content

Transmit and Receive Shortened Reed-Solomon Codes

Transmit and receive standard and shortened RS-encoded, 64-QAM-modulated data through an AWGN channel. Compare the performance of the standard and shortened codes.

Set the parameters for the Reed-Solomon code, where N is the codeword length, K is the nominal message length, and S is the shortened message length. Specify the modulation order, M.

N = 63;  % Codeword length
K = 51;  % Message length
S = 39;  % Shortened message length
M = 64;  % Modulation order

Specify the simulation parameters, where numErrors is the number of errors per Eb/No point, and numBits is the maximum number of bits per Eb/No point. Specify the range of Eb/No values to be simulated. Initialize the BER arrays.

numErrors = 200;
numBits = 1e7;
ebnoVec = (8:13)';
[ber0,ber1] = deal(zeros(size(ebnoVec)));

Create an error rate object to collect error statistics.

errorRate = comm.ErrorRate;

Create a Reed-Solomon encoder and decoder pair for an RS(63,51) code. Calculate the code rate.

rsEncoder = comm.RSEncoder(N,K,'BitInput',true);
rsDecoder = comm.RSDecoder(N,K,'BitInput',true);
rate = K/N;

Execute the main processing loop.

for k = 1:length(ebnoVec)
    
    % Convert the coded Eb/No to an SNR. Initialize the error statistics
    % vector.
    snrdB = ebnoVec(k) + 10*log10(rate) + 10*log10(log2(M));
    errorStats = zeros(3,1);
    
    while errorStats(2) < numErrors && errorStats(3) < numBits
        
        % Generate binary data.
        txData = randi([0 1],K*log2(M),1);
        
        % Encode the data.
        encData = rsEncoder(txData);
        
        % Apply 64-QAM modulation.
        txSig = qammod(encData,M, ...
            'UnitAveragePower',true,'InputType','bit');
        
        % Pass the signal through an AWGN channel.
        rxSig = awgn(txSig,snrdB);
        
        % Demodulated the noisy signal.
        demodSig = qamdemod(rxSig,M, ...
            'UnitAveragePower',true,'OutputType','bit');
        
        % Decode the data.
        rxData = rsDecoder(demodSig);
        
        % Compute the error statistics.
        errorStats = errorRate(txData,rxData);
    end
    
    % Save the BER data, and reset the errorRate counter.
    ber0(k) = errorStats(1);
    reset(errorRate)
end

Create a Reed-Solomon generator polynomial for an RS(63,51) code.

gp = rsgenpoly(N,K,[],0);

Create a Reed-Solomon encoder and decoder pair using shortened message length S and generator polynomial gp. Calculate the rate of the shortened code.

rsEncoder = comm.RSEncoder(N,K,gp,S,'BitInput',true);
rsDecoder = comm.RSDecoder(N,K,gp,S,'BitInput',true);
rate = S/(N-(K-S));

Execute the main processing loop using the shortened Reed-Solomon code.

for k = 1:length(ebnoVec)
    
    % Convert the coded Eb/No to an SNR. Initialize the error statistics
    % vector.
    snrdB = ebnoVec(k) + 10*log10(rate) + 10*log10(log2(M));
    errorStats = zeros(3,1);
    
    while errorStats(2) < numErrors && errorStats(3) < numBits
        
        % Generate binary data.
        txData = randi([0 1],S*log2(M),1);
        
        % Encode the data.
        encData = rsEncoder(txData);
        
        % Apply 64-QAM modulation.
        txSig = qammod(encData,M, ...
            'UnitAveragePower',true,'InputType','bit');
        
        % Pass the signal through an AWGN channel.
        rxSig = awgn(txSig,snrdB);
        
        % Demodulated the noisy signal.
        demodSig = qamdemod(rxSig,M, ...
            'UnitAveragePower',true,'OutputType','bit');
        
        % Decode the data.
        rxData = rsDecoder(demodSig);
        
        % Compute the error statistics.
        errorStats = errorRate(txData,rxData);
    end
    
    % Save the BER data, and reset the errorRate counter.
    ber1(k) = errorStats(1);
    reset(errorRate)
end

Calculate the approximate BER for an RS (63,51) code.

berapprox = bercoding(ebnoVec,'RS','hard',N,K,'qam',64);

Compare the BER curves for the RS(63,51) and RS(51,39) codes. Plot the theoretically approximated BER curve. Observe that shortening the code does not affect performance.

semilogy(ebnoVec,ber0,'o-',ebnoVec,ber1,'c^-',ebnoVec,berapprox,'k--')
legend('RS(63,51)','RS(51,39)','Theory')
xlabel('Eb/No (dB)')
ylabel('Bit Error Rate')
grid

Figure contains an axes object. The axes object with xlabel Eb/No (dB), ylabel Bit Error Rate contains 3 objects of type line. These objects represent RS(63,51), RS(51,39), Theory.