sqlread
Import data into MATLAB from MySQL database table
Syntax
Description
customizes options for importing data from a database table using the data = sqlread(conn,tablename,opts)SQLImportOptions
object.
specifies additional options using one or more name-value arguments with any of the previous
input argument combinations. For example, specify data = sqlread(___,Name,Value)Catalog = "cat" to
import data from a database table stored in the "cat" catalog.
Examples
Use a MySQL® native interface database connection to import product data from a database table into MATLAB® using a MySQL database. Then, perform a simple data analysis.
Create a MySQL native interface database connection to a MySQL database. The database contains the table productTable.
datasource = "MySQLNative"; username = "root"; password = "matlab"; conn = mysql(datasource,username,password);
Import data from the database table productTable. The sqlread function returns a MATLAB table that contains the product data.
tablename = "productTable";
data = sqlread(conn,tablename);Display the first five rows of product data.
head(data,5)
productNumber stockNumber supplierNumber unitCost productDescription
_____________ ___________ ______________ ________ __________________
9 1.2597e+05 1003 13 "Victorian Doll"
8 2.1257e+05 1001 5 "Train Set"
7 3.8912e+05 1007 16 "Engine Kit"
2 4.0031e+05 1002 9 "Painting Set"
4 4.0034e+05 1008 21 "Space Cruiser"
Now, import the data using a row filter. The filter condition is that unitCost must be less than 15.
rf = rowfilter("unitCost"); rf = rf.unitCost < 15; data = sqlread(conn,tablename,"RowFilter",rf);
Again, display the first five rows of product data.
head(data,5)
productNumber stockNumber supplierNumber unitCost productDescription
_____________ ___________ ______________ ________ __________________
9 1.2597e+05 1003 13 "Victorian Doll"
8 2.1257e+05 1001 5 "Train Set"
2 4.0031e+05 1002 9 "Painting Set"
1 4.0034e+05 1001 14 "Building Blocks"
5 4.0046e+05 1005 3 "Tin Soldier"
Close the database connection.
close(conn)
Customize import options when importing data from a database table using the MySQL® native interface. Control the import options by creating an SQLImportOptions object. Then, customize import options for different database columns. Import data using the sqlread function.
This example uses the patients.xls file, which contains the columns Gender, Location, SelfAssessedHealthStatus, and Smoker. The example also uses a MySQL database version 5.7.22 with the MySQL Connector/C++ driver version 8.0.15.
Create a MySQL native interface database connection to a MySQL database.
datasource = "MySQLNative"; username = "root"; password = "matlab"; conn = mysql(datasource,username,password);
Load patient information into the MATLAB® workspace.
patients = readtable("patients.xls");Create the patients database table using the patient information.
tablename = "patients";
sqlwrite(conn,tablename,patients)Create an SQLImportOptions object using the patients database table and the databaseImportOptions function.
opts = databaseImportOptions(conn,tablename)
opts =
SQLImportOptions with properties:
ExcludeDuplicates: false
VariableNamingRule: 'preserve'
VariableNames: {'LastName', 'Gender', 'Age' ... and 7 more}
VariableTypes: {'string', 'string', 'double' ... and 7 more}
SelectedVariableNames: {'LastName', 'Gender', 'Age' ... and 7 more}
FillValues: { <missing>, <missing>, NaN ... and 7 more }
RowFilter: <unconstrained>
VariableOptions: Show all 10 VariableOptions
Display the current import options for the variables in the SelectedVariableNames property of the SQLImportOptions object.
vars = opts.SelectedVariableNames; varOpts = getoptions(opts,vars)
varOpts =
1x10 SQLVariableImportOptions array with properties:
Variable Options:
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10)
Name: 'LastName' | 'Gender' | 'Age' | 'Location' | 'Height' | 'Weight' | 'Smoker' | 'Systolic' | 'Diastolic' | 'SelfAssessedHealthStatus'
Type: 'string' | 'string' | 'double' | 'string' | 'double' | 'double' | 'logical' | 'double' | 'double' | 'string'
MissingRule: 'fill' | 'fill' | 'fill' | 'fill' | 'fill' | 'fill' | 'fill' | 'fill' | 'fill' | 'fill'
FillValue: <missing> | <missing> | NaN | <missing> | NaN | NaN | 0 | NaN | NaN | <missing>
To access sub-properties of each variable, use getoptions
Change the data types for the Gender, Location, Smoker, and SelfAssessedHealthStatus variables using the setoptions function. Because the Gender, Location, and SelfAssessedHealthStatus variables indicate a finite set of repeating values, change their data type to categorical. Because the Smoker variable stores the values 0 and 1, change its data type to double. Then, display the updated import options.
opts = setoptions(opts,{'Gender','Location','SelfAssessedHealthStatus'}, ...
'Type','categorical');
opts = setoptions(opts,'Smoker','Type','double');
varOpts = getoptions(opts,{'Gender','Location','Smoker', ...
'SelfAssessedHealthStatus'})varOpts =
1x4 SQLVariableImportOptions array with properties:
Variable Options:
(1) | (2) | (3) | (4)
Name: 'Gender' | 'Location' | 'Smoker' | 'SelfAssessedHealthStatus'
Type: 'categorical' | 'categorical' | 'double' | 'categorical'
MissingRule: 'fill' | 'fill' | 'fill' | 'fill'
FillValue: <undefined> | <undefined> | 0 | <undefined>
To access sub-properties of each variable, use getoptions
Import the patients database table using the sqlread function, and display the last eight rows of the table.
data = sqlread(conn,tablename,opts); tail(data)
LastName Gender Age Location Height Weight Smoker Systolic Diastolic SelfAssessedHealthStatus
___________ ______ ___ _________________________ ______ ______ ______ ________ _________ ________________________
"Foster" Female 30 St. Mary's Medical Center 70 124 0 130 91 Fair
"Gonzales" Male 48 County General Hospital 71 174 0 123 79 Good
"Bryant" Female 48 County General Hospital 66 134 0 129 73 Excellent
"Alexander" Male 25 County General Hospital 69 171 1 128 99 Good
"Russell" Male 44 VA Hospital 69 188 1 124 92 Good
"Griffin" Male 49 County General Hospital 70 186 0 119 74 Fair
"Diaz" Male 45 County General Hospital 68 172 1 136 93 Good
"Hayes" Male 48 County General Hospital 66 177 0 114 86 Fair
Display a summary of the imported data. The sqlread function applies the import options to the variables in the imported data.
summary(data)
Variables:
LastName: 200×1 string
Gender: 200×1 categorical
Values:
Female 106
Male 94
Age: 200×1 double
Values:
Min 25
Median 39
Max 50
Location: 200×1 categorical
Values:
County General Hospital 78
St. Mary s Medical Center 48
VA Hospital 74
Height: 200×1 double
Values:
Min 60
Median 67
Max 72
Weight: 200×1 double
Values:
Min 111
Median 142.5
Max 202
Smoker: 200×1 double
Values:
Min 0
Median 0
Max 1
Systolic: 200×1 double
Values:
Min 109
Median 122
Max 138
Diastolic: 200×1 double
Values:
Min 68
Median 81.5
Max 99
SelfAssessedHealthStatus: 200×1 categorical
Values:
Excellent 68
Fair 30
Good 80
Poor 22
Now set the filter condition to import only data for patients older than 40 year and not taller than 68 inches.
opts.RowFilter = opts.RowFilter.Age > 40 & opts.RowFilter.Height <= 68
opts =
SQLImportOptions with properties:
ExcludeDuplicates: false
VariableNamingRule: 'preserve'
VariableNames: {'LastName', 'Gender', 'Age' ... and 7 more}
VariableTypes: {'string', 'categorical', 'double' ... and 7 more}
SelectedVariableNames: {'LastName', 'Gender', 'Age' ... and 7 more}
FillValues: { <missing>, <undefined>, NaN ... and 7 more }
RowFilter: Height <= 68 & Age > 40
VariableOptions: Show all 10 VariableOptions
Again, import the patients database table using the sqlread function, and display a summary of the imported data.
data = sqlread(conn,tablename,opts); summary(data)
Variables:
LastName: 48×1 string
Gender: 48×1 categorical
Values:
Female 34
Male 14
Age: 48×1 double
Values:
Min 41
Median 45.5
Max 50
Location: 48×1 categorical
Values:
County General Hospital 26
St. Mary s Medical Center 10
VA Hospital 12
Height: 48×1 double
Values:
Min 62
Median 66
Max 68
Weight: 48×1 double
Values:
Min 119
Median 137
Max 194
Smoker: 48×1 double
Values:
Min 0
Median 0
Max 1
Systolic: 48×1 double
Values:
Min 114
Median 121.5
Max 138
Diastolic: 48×1 double
Values:
Min 68
Median 81.5
Max 96
SelfAssessedHealthStatus: 48×1 categorical
Values:
Excellent 14
Fair 6
Good 20
Poor 8
Delete the patients database table using the execute function.
sqlquery = strcat("DROP TABLE ",tablename);
execute(conn,sqlquery)Close the database connection.
close(conn)
Use a MySQL® native interface database connection to import a limited number of rows of product data from a database table into MATLAB®. Then, sort and filter the rows in the imported data, and perform a simple data analysis.
Create a MySQL® native interface database connection to a MySQL database using the data source name, user name, and password. The database contains the table productTable.
datasource = "MySQLNative"; username = "root"; password = "matlab"; conn = mysql(datasource,username,password);
Import data from the table productTable. Limit the number of rows by setting the 'MaxRows' name-value pair argument to 10. The data table contains the product data.
tablename = "productTable"; data = sqlread(conn,tablename,'MaxRows',10);
Display the first few rows of product data.
data(1:3,:)
ans=3×5 table
productNumber stockNumber supplierNumber unitCost productDescription
_____________ ___________ ______________ ________ __________________
9 1.2597e+05 1003 13 "Victorian Doll"
8 2.1257e+05 1001 5 "Train Set"
7 3.8912e+05 1007 16 "Engine Kit"
Display the first few product descriptions.
data.productDescription(1:3)
ans = 3×1 string
"Victorian Doll"
"Train Set"
"Engine Kit"
Sort the rows in data by the product description column in alphabetical order.
column = "productDescription";
data = sortrows(data,column);Display the first few product descriptions after sorting.
data.productDescription(1:3)
ans = 3×1 string
"Building Blocks"
"Engine Kit"
"Painting Set"
Close the database connection.
close(conn)
Retrieve metadata information when importing data from a database table using the MySQL® native interface. Import data using the sqlread function and explore the metadata information by using dot notation.
This example uses the outages.csv file, which contains outage data. The example also uses a MySQL database version 5.7.22 with the MySQL Connector/C++ driver version 8.0.15.
Create a MySQL® native interface database connection to a MySQL database using the data source name, user name, and password.
datasource = "MySQLNative"; username = "root"; password = "matlab"; conn = mysql(datasource,username,password);
Load outage information into the MATLAB® workspace.
outages = readtable("outages.csv");Create the outages database table using the outage information. Use the 'ColumnType' name-value pair argument to specify the data types of the variables in the MATLAB® table.
tablename = "outages"; sqlwrite(conn,tablename,outages, ... 'ColumnType',["varchar(120)","datetime","numeric(38,16)", ... "numeric(38,16)","datetime","varchar(150)"])
Import the data into the MATLAB workspace and return metadata information about the imported data.
[data,metadata] = sqlread(conn,tablename);
View the names of the variables in the imported data.
metadata.Properties.RowNames
ans = 6×1 cell
{'Region' }
{'OutageTime' }
{'Loss' }
{'Customers' }
{'RestorationTime'}
{'Cause' }
View the data type of each variable in the imported data.
metadata.VariableType
ans = 6×1 cell
{'string' }
{'datetime'}
{'double' }
{'double' }
{'datetime'}
{'string' }
View the missing data value for each variable in the imported data.
metadata.FillValue
ans=6×1 cell array
{1×1 missing}
{[NaT ]}
{[ NaN]}
{[ NaN]}
{[NaT ]}
{1×1 missing}
View the indices of the missing data for each variable in the imported data.
metadata.MissingRows
ans=6×1 cell array
{ 0×1 double}
{ 0×1 double}
{604×1 double}
{328×1 double}
{ 29×1 double}
{ 0×1 double}
Display the first eight rows of the imported data that contain missing restoration time values. data contains restoration time values in the fifth variable. Use the numeric indices to find the rows with missing data.
index = metadata.MissingRows{5,1};
nullrestoration = data(index,:);
head(nullrestoration)ans=8×6 table
Region OutageTime Loss Customers RestorationTime Cause
___________ ____________________ ______ __________ _______________ __________________
"SouthEast" 23-Jan-2003 00:49:00 530.14 2.1204e+05 NaT "winter storm"
"NorthEast" 18-Sep-2004 05:54:00 0 0 NaT "equipment fault"
"MidWest" 20-Apr-2002 16:46:00 23141 NaN NaT "unknown"
"NorthEast" 16-Sep-2004 19:42:00 4718 NaN NaT "unknown"
"SouthEast" 14-Sep-2005 15:45:00 1839.2 3.4144e+05 NaT "severe storm"
"SouthEast" 17-Aug-2004 17:34:00 624.1 1.7879e+05 NaT "severe storm"
"SouthEast" 28-Jan-2006 23:13:00 498.78 NaN NaT "energy emergency"
"West" 20-Jun-2003 18:22:00 0 0 NaT "energy emergency"
Delete the outages database table using the execute function.
sqlstr = "DROP TABLE ";
sqlquery = strcat(sqlstr,tablename);
execute(conn,sqlquery)Close the database connection.
close(conn)
Input Arguments
MySQL native interface database connection, specified as a connection
object. Starting in R2024a, it is recommended that you use setSecret
and getSecret
to store and retrieve your credentials for databases that require authentication. For
more details, refer to this
example.
Database table name, specified as a string scalar or character vector denoting the name of a table in the database.
Example: "employees"
Data Types: string | char
Database import options, specified as an SQLImportOptions object.
Name-Value Arguments
Specify optional pairs of arguments as
Name1=Value1,...,NameN=ValueN, where Name is
the argument name and Value is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.
Before R2021a, use commas to separate each name and value, and enclose
Name in quotes.
Example: data =
sqlread(conn,'inventoryTable','Catalog','toy_store','MaxRows',5) imports five
rows of data from the database table inventoryTable stored in the
toy_store catalog.
Database catalog name, specified as a string scalar or character vector. A catalog serves as the container for the schemas in a database and contains related metadata information. A database can have multiple catalogs.
Example: Catalog = "toy_store"
Data Types: string | char
Maximum number of rows to return, specified as the comma-separated pair consisting of
'MaxRows' and a positive numeric scalar. By default, the
sqlread function returns all rows from the executed SQL
query. Use this name-value pair argument to limit the number of rows imported into
MATLAB.
Example: 'MaxRows',10
Data Types: double
Variable naming rule, specified as the comma-separated pair consisting of 'VariableNamingRule' and one of these values:
"preserve"— Preserve most variable names when thesqlreadfunction imports data. For details, see the Limitations section."modify"— Remove non-ASCII characters from variable names when thesqlreadfunction imports data.
Example: 'VariableNamingRule',"modify"
Data Types: string
Row filter condition, specified as a matlab.io.RowFilter
object.
Example: rf = rowfilter("productnumber"); rf = rf.productnumber <= 5;
sqlread(conn,tablename,"RowFilter",rf)
Output Arguments
Imported data, returned as a table. The rows of the table correspond to the rows in
the database table tablename. The variables in the table correspond
to each column in the database table.
If the database table contains no data to import, then data is an
empty table.
When you import data, the sqlread function converts the data
type of each column from the MySQL database to the MATLAB data type. This table maps the data type of a database column to the
converted MATLAB data type.
| MySQL Data Type | MATLAB Data Type |
|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Metadata information, returned as a table with these variables.
| Variable Name | Variable Description | Variable Data Type |
|---|---|---|
| Data type of each variable in the imported data | Cell array of character vectors |
| Value of missing data for each variable in the imported data | Cell array of missing data values |
| Indices for each occurrence of missing data in each variable of the imported data | Cell array of numeric indices |
By default, the sqlread function imports text
data as a character vector and numeric data as a double.
FillValue is an empty character
array (for text data) or NaN (for numeric
data) by default. To change the missing data value to another
value, use the SQLImportOptions object.
The RowNames property of the metadata table contains
the names of the variables in the imported data.
Limitations
The
sqlreadfunction returns an error when you use theVariableNamingRulename-value argument with theSQLImportOptionsobjectopts.When the
VariableNamingRulename-value pair argument is set to the value"modify":The variable names
Properties,RowNames, andVariableNamesare reserved identifiers for thetabledata type.The length of each variable name must be less than the number returned by
namelengthmax.
The
sqlreadfunction returns an error if you specify theRowFiltername-value argument with theSQLImportOptionsobjectopts. It is ambiguous which of theRowFilterobject to use in this case, especially if the filter conditions are different.
Version History
Introduced in R2020bYou can use the RowFilter name-value argument to selectively import
rows of data from a database table.
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Seleccione un país/idioma
Seleccione un país/idioma para obtener contenido traducido, si está disponible, y ver eventos y ofertas de productos y servicios locales. Según su ubicación geográfica, recomendamos que seleccione: .
También puede seleccionar uno de estos países/idiomas:
Cómo obtener el mejor rendimiento
Seleccione China (en idioma chino o inglés) para obtener el mejor rendimiento. Los sitios web de otros países no están optimizados para ser accedidos desde su ubicación geográfica.
América
- América Latina (Español)
- Canada (English)
- United States (English)
Europa
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)