Capas personalizadas
Defina capas personalizadas de deep learning
Para la mayor parte de las tareas, puede usar capas integradas. Si no hay una capa integrada que necesita para la tarea, puede definir su propia capa personalizada. Puede definir capas personalizadas con parámetros que se puedan aprender y de estado. Después de definir una capa personalizada, puede comprobar que es válida y compatible con la GPU, y que devuelve como salida gradientes correctamente definidos. Para obtener una lista de capas compatibles, consulte Lista de capas de deep learning.
Funciones
Temas
Visión general de las capas personalizadas
- Definir capas de deep learning personalizadas
Aprenda a definir capas de deep learning personalizadas. - Check Custom Layer Validity
Learn how to check the validity of custom deep learning layers.
Definir capas personalizadas
- Define Custom Deep Learning Layer with Learnable Parameters
This example shows how to define a SReLU layer and use it in a convolutional neural network. - Define Custom Deep Learning Layer with Multiple Inputs
This example shows how to define a custom weighted addition layer and use it in a convolutional neural network. - Define Custom Deep Learning Layer with Formatted Inputs
This example shows how to define a custom layer with formatteddlarray
inputs. - Define Custom Recurrent Deep Learning Layer
This example shows how to define a peephole LSTM layer and use it in a neural network. - Specify Custom Layer Backward Function
This example shows how to define a SReLU layer and specify a custom backward function. - Custom Layer Function Acceleration
Accelerate custom layer forward and predict functions by caching and reusing traces. - Define Custom Deep Learning Layer for Code Generation
This example shows how to define a SReLU layer that supports code generation.
Composición de la red y capas anidadas
- Deep Learning Network Composition
Define custom layers that contain neural networks. - Define Nested Deep Learning Layer Using Network Composition
This example shows how to define a nested custom deep learning layer. - Train Network with Custom Nested Layers
This example shows how to create and train a network with nested layers defined using network composition. - Weight Tying Using Nested Layer
This example shows how to implement weight tying using a nested layer.