Specify Input Types Using assert Statements in MATLAB Code
For code generation, you can use assert statements to define the
types of entry-point function inputs within your MATLAB® code. This approach is called preconditioning. Alternatively, you can
specify input types for code generation by using arguments blocks in your MATLAB code, by using the MATLAB
Coder™ app, or by using the -args argument with codegen (MATLAB Coder) at the command line. See
Specify Types of Entry-Point Function Inputs (MATLAB Coder).
How to Use assert with MATLAB Coder
Use the assert function to invoke standard MATLAB functions for specifying the class, size, and complexity of
primary function inputs.
If your MATLAB function uses assert statements to define
input types, the app uses these definitions by default. In the Entry
Points pane, the app selects the Source input types
from file check box to the right of the function
signature.

When specifying input properties using the assert function,
use one of the following methods. Use the exact syntax that is provided; do not
modify it.
Specify Any Class
assert(isa(param,'class_name'))
Sets the input parameter param to
the MATLAB class class_name.
For example, to set the class of input U to a 32-bit
signed integer,
call:
... assert(isa(U,'int32')); ...
Specify fi Class
assert(isfi(param)) assert(isa(param,'embedded.fi'))
Sets the input parameter param to the MATLAB class fi (fixed-point
numeric object). For example, to set the class of input
U to fi, call:
... assert(isfi(U)); ...
or
... assert(isa(U,'embedded.fi')); ...
You must specify both the fi class and the numerictype. See
Specify numerictype of Fixed-Point Input. You can also
set the fimath properties,
see Specify fimath of Fixed-Point Input. If you do not set
the fimath properties,
codegen uses the MATLAB default fimath value.
Specify Structure Class
assert(isstruct(param)) assert(isa(param,'struct'))
Sets the input parameter param to
the MATLAB class struct (structure).
For example, to set the class of input U to a
struct, call:
... assert(isstruct(U)); ...
or
... assert(isa(U,'struct')); ...
If you set the class of an input parameter to struct,
you must specify the properties of
all fields in the order that they
appear in the structure definition.
Specify Cell Array Class
assert(iscell( param)) assert(isa(param,'cell'))
Sets the input parameter param to
the MATLAB class cell (cell array). For
example, to set the class of input C to a
cell, call:
... assert(iscell(C)); ...
or
... assert(isa(C,'cell')); ...
To specify the properties of cell array elements, see Specifying Properties of Cell Arrays.
Specify Fixed Size
assert(all(size (param) == [dims ]))
Sets the input parameter param to
the size that dimensions dims
specifies. For example, to set the size of input U to
a 3-by-2 matrix, call:
... assert(all(size(U)== [3 2])); ...
Specify Scalar Size
assert(isscalar (param)) assert(all(size (param) == [ 1 ]))
Sets the size of input parameter
param to scalar. To set the
size of input U to scalar,
call:
... assert(isscalar(U)); ...
... assert(all(size(U)== [1])); ...
Specify Upper Bounds for Variable-Size Inputs
assert(all(size(param)<=[N0 N1 ...])); assert(all(size(param)<[N0 N1 ...]));
Sets the upper-bound size of each dimension of input parameter
param. To set the
upper-bound size of input U to be less than or equal
to a 3-by-2 matrix, call:
assert(all(size(U)<=[3 2]));
Note
You can also specify upper bounds for variable-size inputs using
coder.varsize.
Specify Inputs with Fixed- and Variable-Size Dimensions
assert(all(size(param)>=[M0 M1 ...])); assert(all(size(param)<=[N0 N1 ...]));
When you use
assert(all(size(param)>=[M0
M1 ...])) to specify the lower-bound size of each
dimension of an input parameter:
You must also specify an upper-bound size for each dimension of the input parameter.
For each dimension,
k, the lower-boundMkmust be less than or equal to the upper-boundNk.To specify a fixed-size dimension, set the lower and upper bound of a dimension to the same value.
Bounds must be nonnegative.
To fix the size of the first dimension of input U to 3
and set the second dimension as variable size with upper bound of 2,
call:
assert(all(size(U)>=[3 0])); assert(all(size(U)<=[3 2]));
Specify Size of Individual Dimensions
assert (size(param,k)==Nk); assert (size(param,k)<=Nk); assert (size(param,k)<Nk);
You can specify individual dimensions and all dimensions simultaneously. You can also specify individual dimensions instead of specifying all dimensions simultaneously. The following rules apply:
You must specify the size of each dimension at least once.
The last dimension specification takes precedence over earlier specifications.
Sets the upper-bound size of dimension k of input
parameter param. To set the
upper-bound size of the first dimension of input U to
3, call:
assert(size(U,1)<=3)
To fix the size of the second dimension of input U to
2, call:
assert(size(U,2)==2)
Specify Real Input
assert(isreal (param))
Specifies that the input parameter
param is real. To specify
that input U is real,
call:
... assert(isreal(U)); ...
Specify Complex Input
assert(~isreal (param))
Specifies that the input parameter
param is complex. To
specify that input U is complex,
call:
... assert(~isreal(U)); ...
Specify numerictype of Fixed-Point Input
assert(isequal(numerictype(fiparam ), T))
Sets the numerictype properties of
fi input parameter
fiparam to the
numerictype object
T. For example, to
specify the numerictype property of fixed-point input
U as a signed numerictype
object T with 32-bit word length and 30-bit fraction
length, use the following
code:
%#codegen ... % Define the numerictype object. T = numerictype(1, 32, 30); % Set the numerictype property of input U to T. assert(isequal(numerictype(U),T)); ...
Specifying the numerictype for a variable does not
automatically specify that the variable is fixed point. You must specify
both the fi class and the
numerictype.
Specify fimath of Fixed-Point Input
assert(isequal(fimath(fiparam ), F))
Sets the fimath properties of fi
input parameter fiparam to the
fimath object
F. For example, to
specify the fimath property of fixed-point input
U so that it saturates on integer overflow,
use the following
code:
%#codegen ... % Define the fimath object. F = fimath('OverflowMode','saturate'); % Set the fimath property of input U to F. assert(isequal(fimath(U),F)); ...
fimath
properties using assert, codegen
uses the MATLAB default fimath value.Specify Multiple Properties of Input
assert(function1(params)&&
function2(params)&&
function3(params(&&...)
Specifies the class, size, and complexity of one or more inputs using a
single assert function call. For example, the
following code specifies that input U is a double,
complex, 3-by-3 matrix, and input V is a 16-bit
unsigned
integer:
%#codegen ... assert(isa(U,'double') && ~isreal(U) && all(size(U) == [3 3]) && isa(V,'uint16')); ...
Rules for Using assert Function
When using the assert function to specify the properties of
primary function inputs, follow these rules:
Call
assertfunctions at the beginning of the primary function, before control-flow operations such asifstatements or subroutine calls.Do not call
assertfunctions inside conditional constructs, such asif,for,while, andswitchstatements.For a fixed-point input, you must specify both the
ficlass and thenumerictype. See Specify numerictype of Fixed-Point Input. You can also set thefimathproperties. See Specify fimath of Fixed-Point Input. If you do not set thefimathproperties,codegenuses the MATLAB defaultfimathvalue.If you set the class of an input parameter to
struct, you must specify the class, size, and complexity of all fields in the order that they appear in the structure definition.When you use
assert(all(size(param)>=[M0 M1 ...]))to specify the lower-bound size of each dimension of an input parameter:You must also specify an upper-bound size for each dimension of the input parameter.
For each dimension,
k, the lower-boundMkmust be less than or equal to the upper-boundNk.To specify a fixed-size dimension, set the lower and upper bound of a dimension to the same value.
Bounds must be nonnegative.
If you specify individual dimensions, the following rules apply:
You must specify the size of each dimension at least once.
The last dimension specification takes precedence over earlier specifications.
Note
The generation of single precision C/C++ code is not supported
when specifying input types using preconditioning. To generate
single precision C/C++ code, use codegen
-singleC and specify input types using
-args.
Specifying General Properties of Primary Inputs
In the following code excerpt, a primary MATLAB function mcspecgram takes two inputs:
pennywhistle and win. The code
specifies the following properties for these inputs.
| Input | Property | Value |
|---|---|---|
pennywhistle | class | int16 |
| size | 220500-by-1 vector | |
| complexity | real (by default) | |
win | class | double
|
| size | 1024-by-1 vector | |
| complexity | real (by default) |
%#codegen function y = mcspecgram(pennywhistle,win) nx = 220500; nfft = 1024; assert(isa(pennywhistle,'int16')); assert(all(size(pennywhistle) == [nx 1])); assert(isa(win,'double')); assert(all(size(win) == [nfft 1])); ...
Alternatively, you can combine property specifications for one or more inputs
inside assert
commands:
%#codegen function y = mcspecgram(pennywhistle,win) nx = 220500; nfft = 1024; assert(isa(pennywhistle,'int16') && all(size(pennywhistle) == [nx 1])); assert(isa(win,'double') && all(size(win) == [nfft 1])); ...
Specifying Properties of Primary Fixed-Point Inputs
To specify fixed-point inputs, you must install Fixed-Point Designer™ software.
In the following example, the primary MATLAB function mcsqrtfi takes one fixed-point input
x. The code specifies the following properties for
this input.
| Property | Value |
|---|---|
| class | fi |
numerictype | numerictype object
T, as specified in the primary
function |
fimath | fimath object
F, as specified in the primary
function |
| size | scalar |
| complexity | real (by default) |
function y = mcsqrtfi(x) %#codegen T = numerictype('WordLength',32,'FractionLength',23,... 'Signed',true); F = fimath('SumMode','SpecifyPrecision',... 'SumWordLength',32,'SumFractionLength',23,... 'ProductMode','SpecifyPrecision',... 'ProductWordLength',32,'ProductFractionLength',23); assert(isfi(x)); assert(isequal(numerictype(x),T)); assert(isequal(fimath(x),F)); y = sqrt(x);
You must specify both the fi class and the
numerictype.
Specifying Properties of Cell Arrays
To specify the class cell (cell array), use one of
the following syntaxes:
assert(iscell(param)) assert(isa( param,'cell'))
For example, to set the class of input C to
cell, use:
... assert(iscell(C)); ...
or
... assert(isa(C,'cell')); ...
You can also specify the size of the cell array and the properties of the cell array elements. The number of elements that you specify determines whether the cell array is homogeneous or heterogeneous. See Code Generation for Cell Arrays (MATLAB Coder).
If you specify the properties of the first element only, the cell array is
homogeneous. For example, the following code specifies that
C is a 1x3 homogeneous cell array whose elements are
1x1 double.
... assert(isa(C,'cell')); assert(all(size(C) == [1 3])); assert(isa(C{1},'double')); ...
If you specify the properties of the first element only, but also assign a
structure type name to the cell array, the cell array is heterogeneous. Each
element has the properties of the first element. For example, the following
code specifies that C is a 1x3 heterogeneous cell array.
Each element is a 1x1
double.
... assert(isa(C,'cell')); assert(all(size(C) == [1 3])); assert(isa(C{1},'double')); coder.cstructname(C,'myname'); ...
If you specify the properties of each element, the cell array is heterogeneous. For example, the following code specifies a 1x2 heterogeneous cell array whose first element is 1x1 char and whose second element is 1x3 double.
... assert(isa(C,'cell')); assert(all(size(C) == [1 2])); assert(isa(C{1},'char')); assert(all(size(C{2}) == [1 3])); assert(isa(C{2},'double')); ...
If you specify more than one element, you cannot specify that the cell array is variable size, even if all elements have the same properties. For example, the following code specifies a variable-size cell array. Because the code specifies the properties of the first and second elements, code generation fails.
... assert(isa(C,'cell')); assert(all(size(C) <= [1 2])); assert(isa(C{1},'double')); assert(isa(C{2},'double')); ...
In the previous example, if you specify the first element only, you can specify that the cell array is variable-size. For example:
... assert(isa(C,'cell')); assert(all(size(C) <= [1 2])); assert(isa(C{1},'double')); ...
Specifying Class and Size of Scalar Structure
Suppose that you define S as the following scalar MATLAB
structure:
S = struct('r',double(1),'i',int8(4));
S and its
fields:function y = fcn(S) %#codegen % Specify the class of the input as struct. assert(isstruct(S)); % Specify the class and size of the fields r and i % in the order in which you defined them. assert(isa(S.r,'double')); assert(isa(S.i,'int8'); ...
In most cases, when you do not explicitly specify values for properties, MATLAB Coder uses defaults—except for structure fields. The only way to name a field in a structure is to set at least one of its properties. At a minimum, you must specify the class of a structure field.
Specifying Class and Size of Structure Array
For structure arrays, you must choose a representative element of the array for
specifying the properties of each field. For example, assume that you have
defined S as the following 1-by-2 array of MATLAB
structures:
S = struct('r',{double(1),double(2)},'i',{int8(4), int8(5)});
The following code specifies the class and size of each field of structure
input S by using the first element of the
array:
%#codegen function y = fcn(S) % Specify the class of the input S as struct. assert(isstruct(S)); % Specify the size of the fields r and i % based on the first element of the array. assert(all(size(S) == [1 2])); assert(isa(S(1).r,'double')); assert(isa(S(1).i,'int8'));
See Also
codegen (MATLAB Coder)
Topics
- Specify Types of Entry-Point Function Inputs (MATLAB Coder)