tune
Description
tune(
adjusts the properties of the filter
,sensorData
,groundTruth
)ahrsfilter
filter object,
filter
, to reduce the root-mean-squared (RMS) quaternion distance
error between the fused sensor data and the ground truth. The function uses the property
values in the filter as the initial estimate for the optimization algorithm.
tune(___,
specifies the
tuning configuration based on a config
)tunerconfig
object,
config
.
Examples
Tune ahrsfilter
to Improve Orientation Estimate
Load recorded sensor data and ground truth data.
ld = load('ahrsfilterTuneData.mat'); qTrue = ld.groundTruth.Orientation; % true orientation
Create an arhsfitler
object.
fuse = ahrsfilter;
Fuse the sensor data using the default, untuned filter.
qEstUntuned = fuse(ld.sensorData.Accelerometer, ...
ld.sensorData.Gyroscope, ld.sensorData.Magnetometer);
Create a tunerconfig
object. Tune the ahrsfilter
object to improve the orientation estimation based on the configuration.
config = tunerconfig('ahrsfilter');
tune(fuse,ld.sensorData,ld.groundTruth,config);
Iteration Parameter Metric _________ _________ ______ 1 AccelerometerNoise 0.1345 1 GyroscopeNoise 0.1342 1 MagnetometerNoise 0.1341 1 GyroscopeDriftNoise 0.1341 1 LinearAccelerationNoise 0.1332 1 MagneticDisturbanceNoise 0.1324 1 LinearAccelerationDecayFactor 0.1317 1 MagneticDisturbanceDecayFactor 0.1316 2 AccelerometerNoise 0.1316 2 GyroscopeNoise 0.1312 2 MagnetometerNoise 0.1311 2 GyroscopeDriftNoise 0.1311 2 LinearAccelerationNoise 0.1300 2 MagneticDisturbanceNoise 0.1292 2 LinearAccelerationDecayFactor 0.1285 2 MagneticDisturbanceDecayFactor 0.1285 3 AccelerometerNoise 0.1285 3 GyroscopeNoise 0.1280 3 MagnetometerNoise 0.1279 3 GyroscopeDriftNoise 0.1279 3 LinearAccelerationNoise 0.1267 3 MagneticDisturbanceNoise 0.1258 3 LinearAccelerationDecayFactor 0.1253 3 MagneticDisturbanceDecayFactor 0.1253 4 AccelerometerNoise 0.1252 4 GyroscopeNoise 0.1247 4 MagnetometerNoise 0.1246 4 GyroscopeDriftNoise 0.1246 4 LinearAccelerationNoise 0.1233 4 MagneticDisturbanceNoise 0.1224 4 LinearAccelerationDecayFactor 0.1220 4 MagneticDisturbanceDecayFactor 0.1220 5 AccelerometerNoise 0.1220 5 GyroscopeNoise 0.1213 5 MagnetometerNoise 0.1212 5 GyroscopeDriftNoise 0.1212 5 LinearAccelerationNoise 0.1200 5 MagneticDisturbanceNoise 0.1190 5 LinearAccelerationDecayFactor 0.1187 5 MagneticDisturbanceDecayFactor 0.1187 6 AccelerometerNoise 0.1187 6 GyroscopeNoise 0.1180 6 MagnetometerNoise 0.1178 6 GyroscopeDriftNoise 0.1178 6 LinearAccelerationNoise 0.1167 6 MagneticDisturbanceNoise 0.1156 6 LinearAccelerationDecayFactor 0.1155 6 MagneticDisturbanceDecayFactor 0.1155 7 AccelerometerNoise 0.1155 7 GyroscopeNoise 0.1147 7 MagnetometerNoise 0.1145 7 GyroscopeDriftNoise 0.1145 7 LinearAccelerationNoise 0.1137 7 MagneticDisturbanceNoise 0.1126 7 LinearAccelerationDecayFactor 0.1125 7 MagneticDisturbanceDecayFactor 0.1125 8 AccelerometerNoise 0.1125 8 GyroscopeNoise 0.1117 8 MagnetometerNoise 0.1116 8 GyroscopeDriftNoise 0.1116 8 LinearAccelerationNoise 0.1112 8 MagneticDisturbanceNoise 0.1100 8 LinearAccelerationDecayFactor 0.1099 8 MagneticDisturbanceDecayFactor 0.1099 9 AccelerometerNoise 0.1099 9 GyroscopeNoise 0.1091 9 MagnetometerNoise 0.1090 9 GyroscopeDriftNoise 0.1090 9 LinearAccelerationNoise 0.1090 9 MagneticDisturbanceNoise 0.1076 9 LinearAccelerationDecayFactor 0.1075 9 MagneticDisturbanceDecayFactor 0.1075 10 AccelerometerNoise 0.1075 10 GyroscopeNoise 0.1066 10 MagnetometerNoise 0.1064 10 GyroscopeDriftNoise 0.1064 10 LinearAccelerationNoise 0.1064 10 MagneticDisturbanceNoise 0.1049 10 LinearAccelerationDecayFactor 0.1047 10 MagneticDisturbanceDecayFactor 0.1047 11 AccelerometerNoise 0.1047 11 GyroscopeNoise 0.1038 11 MagnetometerNoise 0.1036 11 GyroscopeDriftNoise 0.1036 11 LinearAccelerationNoise 0.1036 11 MagneticDisturbanceNoise 0.1016 11 LinearAccelerationDecayFactor 0.1014 11 MagneticDisturbanceDecayFactor 0.1014 12 AccelerometerNoise 0.1014 12 GyroscopeNoise 0.1005 12 MagnetometerNoise 0.1002 12 GyroscopeDriftNoise 0.1002 12 LinearAccelerationNoise 0.1002 12 MagneticDisturbanceNoise 0.0978
Fuse the sensor data using the tuned filter.
qEstTuned = fuse(ld.sensorData.Accelerometer, ...
ld.sensorData.Gyroscope, ld.sensorData.Magnetometer);
Compare the tuned and untuned RMS error performances.
dUntuned = rad2deg(dist(qEstUntuned, qTrue)); dTuned = rad2deg(dist(qEstTuned, qTrue)); rmsUntuned = sqrt(mean(dUntuned.^2))
rmsUntuned = 7.7088
rmsTuned = sqrt(mean(dTuned.^2))
rmsTuned = 5.6033
Visualize the errors with respect to time.
N = numel(dUntuned); t = (0:N-1)./ fuse.SampleRate; plot(t, dUntuned, 'r', t, dTuned, 'b'); legend('Untuned', 'Tuned'); title('ahrsfilter - Tuned vs Untuned Error') xlabel('Time (s)'); ylabel('Orientation Error (degrees)');
Input Arguments
filter
— Filter object
ahrsfilter
object
Filter object, specified as an ahrsfilter
object.
sensorData
— Sensor data
table
Sensor data, specified as a table
. In each row, the sensor data is
specified as:
Accelerometer
— Accelerometer data, specified as a 1-by-3 vector of scalars in m2/s.Gyroscope
— Gyroscope data, specified as a 1-by-3 vector of scalars in rad/s.Magnetometer
— Magnetometer data, specified as a 1-by-3 vector of scalars in μT.
If you set the Cost
property of the tuner
configuration input, config
, to Custom
, then you
can use other data types for the sensorData
input based on your
choice.
groundTruth
— Ground truth data
table
Ground truth data, specified as a table
. The table has only one column of Orientation
data.
In each row, the orientation is specified as a quaternion
object or a 3-by-3 rotation matrix.
The function processes each row of the sensorData
and
groundTruth
tables sequentially to calculate the state estimate
and RMS error from the ground truth. Each row of the sensorData
and
the groundTruth
tables must correspond to each other.
If you set the Cost
property of the tuner configuration input,
config
, to Custom
, then you can use other data
types for the groundTruth
input based on your choice.
config
— Tuner configuration
tunerconfig
object
Tuner configuration, specified as a tunerconfig
object.
References
[1] Abbeel, P., Coates, A., Montemerlo, M., Ng, A.Y. and Thrun, S. Discriminative Training of Kalman Filters. In Robotics: Science and systems, Vol. 2, pp. 1, 2005.
Version History
Introduced in R2020b
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: United States.
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)