ldivide, .\
Element-wise quaternion left division
Syntax
Description
Examples
Create a 2-by-1 quaternion array, and divide it element-by-element by a real scalar.
A = quaternion([1:4;5:8])
A = 2×1 quaternion array
1 + 2i + 3j + 4k
5 + 6i + 7j + 8k
B = 2; C = A.\B
C = 2×1 quaternion array
0.066667 - 0.13333i - 0.2j - 0.26667k
0.057471 - 0.068966i - 0.08046j - 0.091954k
Create a 2-by-2 quaternion array, and divide it element-by-element by another 2-by-2 quaternion array.
q1 = quaternion([1:4;2:5;4:7;5:8]); A = reshape(q1,2,2)
A = 2×2 quaternion array
1 + 2i + 3j + 4k 4 + 5i + 6j + 7k
2 + 3i + 4j + 5k 5 + 6i + 7j + 8k
q2 = quaternion(magic(4)); B = reshape(q2,2,2)
B = 2×2 quaternion array
16 + 2i + 3j + 13k 9 + 7i + 6j + 12k
5 + 11i + 10j + 8k 4 + 14i + 15j + 1k
C = A.\B
C = 2×2 quaternion array
2.7 - 1.9i - 0.9j - 1.7k 1.5159 - 0.37302i - 0.15079j - 0.02381k
2.2778 + 0.46296i - 0.57407j + 0.092593k 1.2471 + 0.91379i - 0.33908j - 0.1092k
Input Arguments
Divisor, specified as a quaternion
object, an
array of quaternion
objects of any dimensionality, a real scalar, or an
array of real numbers of any dimensionality. Numeric values must be of data type
single
or double
.
A
and B
must have compatible sizes. In the
simplest cases, they can be the same size or one can be a scalar. Two inputs have
compatible sizes if, for every dimension, the dimension sizes of the inputs are the same
or one of the dimensions is 1.
Dividend, specified as a quaternion
object, an
array of quaternion
objects of any dimensionality, a real scalar, or an
array of real numbers of any dimensionality. Numeric values must be of data type
single
or double
.
A
and B
must have compatible sizes. In the
simplest cases, they can be the same size or one can be a scalar. Two inputs have
compatible sizes if, for every dimension, the dimension sizes of the inputs are the same
or one of the dimensions is 1.
Output Arguments
Result of quaternion division, returned as a quaternion
object or
an array of quaternion
objects.
Algorithms
Given a quaternion and a real scalar p,
Note
For a real scalar p, A./p = A.\p.
Given two quaternions A and B of compatible sizes, then
Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
Version History
Introduced in R2018b
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)