Main Content

Grey-Box Model Estimation

Estimate coefficients of linear and nonlinear differential, difference and state-space equations

If you understand the physics of your system and you can represent the system using ordinary differential or difference equations (ODEs) with unknown parameters, then you can use System Identification Toolbox™ commands to perform grey-box modeling. Grey-box model ODEs specify the mathematical structure of the model explicitly, including couplings between parameters. Grey-box modeling is useful when you know the relationships between variables, constraints on model behavior, or explicit equations representing system dynamics.

Functions

expand all

greyestEstimate ODE parameters of linear grey-box model
greyestOptionsOption set for greyest
nlgreyestOptionsOption set for nlgreyest
nlgreyestEstimate nonlinear grey-box model parameters
idgreyLinear ODE (grey-box model) with identifiable parameters
idnlgreyNonlinear grey-box model
pemPrediction error minimization for refining linear and nonlinear models
initSet or randomize initial parameter values
getparParameter values and properties of idnlgrey model parameters
setparSet initial parameter values of idnlgrey model object
getpvecObtain model parameters and associated uncertainty data
setpvecModify values of model parameters
getinitValues of idnlgrey model initial states
setinitSet initial states of idnlgrey model object
findstatesEstimate initial states of model
findstatesOptionsOption set for findstates
simSimulate response of identified model
simOptionsOption set for sim

Topics

Grey-Box Modeling Basics

Linear Grey-Box Models

Nonlinear Grey-Box Models

Featured Examples

Go to top of page