Cúmulos y nubes
Si su tarea informática es demasiado grande o demasiado lenta para su computadora local, puede descargar su cálculo a un clúster en el sitio o en la nube para ejecutar su código MATLAB® con cambios mínimos. Pruebe Parallel > Discover Clusters en la barra de herramientas MATLAB para averiguar si ya tiene un clúster disponible.
Si ya tienes un clúster con un programador, puedes integrar MATLAB con él usando MATLAB Parallel Server™. Alternativamente, si no tiene un programador existente, entonces MATLAB Parallel Server proporciona el Programador de trabajos MATLAB.
Funciones
Clases
Ejemplos y procedimientos
Configuración del clúster
- Discover Clusters and Use Cluster Profiles
Find out how to work with cluster profiles and discover cloud clusters. - Scale Up from Desktop to Cluster
Develop your parallel MATLAB® code on your local machine and scale up to a cluster. - Process Big Data in the Cloud
This example shows how to access a large data set in the cloud and process it in a cloud cluster using MATLAB® capabilities for big data. - Scale Up Parallel Code to Large Clusters
Discover options to scale your parallel MATLAB code to use large HPC clusters.
- Benchmark Your Cluster with the HPC Challenge
This example shows how to evaluate the performance of a compute cluster with the HPC Challenge Benchmark.
Aprendizaje profundo
- Scale Up Deep Learning in Parallel, on GPUs, and in the Cloud (Deep Learning Toolbox)
Explore options for deep learning with MATLAB in parallel and using multiple GPUs, locally or in the cloud. - Deep Learning with MATLAB on Multiple GPUs (Deep Learning Toolbox)
Speed up deep neural network training using multiple GPUs locally or in the cloud. - Train Network Using Automatic Multi-GPU Support (Deep Learning Toolbox)
This example shows how to use multiple GPUs on your local machine for deep learning training using automatic parallel support. - Use parfor to Train Multiple Deep Learning Networks (Deep Learning Toolbox)
This example shows how to use aparfor
loop to perform a parameter sweep on a training option. - Use parfeval to Train Multiple Deep Learning Networks (Deep Learning Toolbox)
This example shows how to useparfeval
to perform a parameter sweep on the depth of the network architecture for a deep learning network and retrieve data during training. - Train Deep Learning Networks in Parallel (Deep Learning Toolbox)
This example shows how to run multiple deep learning experiments on your local machine. - Train Network in Parallel with Custom Training Loop (Deep Learning Toolbox)
This example shows how to set up a custom training loop to train a network in parallel. - Work with Deep Learning Data in AWS (Deep Learning Toolbox)
This example shows how to upload data to an Amazon S3™ bucket. - Use batch to Train Multiple Deep Learning Networks (Deep Learning Toolbox)
This example shows how to train multiple networks in batch jobs using a cluster so that you can continue working or close MATLAB® during training.
Conceptos
- Specify Your Parallel Settings
Adjust your parallel settings, and automatically create a parallel pool.
- Set Environment Variables on Workers
Copy system environment variables from the client to workers in a cluster.
Información relacionada
- Paralelo y nube (Deep Learning Toolbox)
- Installation (MATLAB Parallel Server)
- Reduzca el tiempo para obtener resultados con MATLAB mediante computación paralela