Main Content

step

System object: phased.ESPRITEstimator
Namespace: phased

Perform DOA estimation

Syntax

ANG = step(H,X)

Description

Note

Starting in R2016b, instead of using the step method to perform the operation defined by the System object™, you can call the object with arguments, as if it were a function. For example, y = step(obj,x) and y = obj(x) perform equivalent operations.

ANG = step(H,X) estimates the DOAs from X using the DOA estimator, H. X is a matrix whose columns correspond to channels. ANG is a row vector of the estimated broadside angles (in degrees). You can specify this argument as single or double precision.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A size change can occur, for example, in the case of a pulse waveform with variable pulse repetition frequency.

Note

The object performs an initialization the first time the object is executed. This initialization locks nontunable properties and input specifications, such as dimensions, complexity, and data type of the input data. If you change a nontunable property or an input specification, the System object issues an error. To change nontunable properties or inputs, you must first call the release method to unlock the object.

Examples

expand all

Estimate the directions-of-arrival (DOA) of two signals received by a standard 10-element ULA with element spacing 1 m. The antenna operating frequency is 150 MHz. The actual direction of the first signal is 10° in azimuth and 20° in elevation. The direction of the second signal is 45° in azimuth and 60° in elevation.

Create the signals.

fs = 8.0e3;
t = (0:1/fs:1).';
x1 = cos(2*pi*t*300);
x2 = cos(2*pi*t*400);
array = phased.ULA('NumElements',10,'ElementSpacing',1);
array.Element.FrequencyRange = [100e6 300e6];
fc = 150e6;

Create the plane waves and add noise.

x = collectPlaneWave(array,[x1 x2],[10 20;45 60]',fc);
noise = 0.1/sqrt(2)*(randn(size(x)) + 1i*randn(size(x)));

Estimate the arrival angles.

estimator = phased.ESPRITEstimator('SensorArray',array,...
    'OperatingFrequency',fc);
doas = estimator(x + noise);
az = broadside2az(sort(doas),[20 60])
az = 1×2

   10.0000   45.0126

Go to top of page