cross validation for neural network
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
kelvina
el 7 de Feb. de 2014
Respondida: Greg Heath
el 12 de Feb. de 2014
i want to use cross validation method to decide the number of hidden neurons of a neural network.
i want 5 fold cross validation. and right now i am using following NN architecture:
if true
net=newff(minmax(in'),[7,3],{'tansig','purelin'},'traingdx');
net.trainParam.show = 50;
net.trainParam.lr = 0.05;
net.trainParam.mc = 0.7;
net.trainParam.epochs = 3500;
net.trainParam.goal = 1e-2;
a1 = net.b{1};
a2 = net.b{2};
w1 = net.iw{1};
w2 = net.lw{2};
end
how can i use cross validation for this. and where the errors of each fold will be stored......
0 comentarios
Respuesta aceptada
Greg Heath
el 12 de Feb. de 2014
Search the NEWSGROUP and ANSWERS using
greg crossvalidation
and
greg cross-validation
and
greg cross validation
Please post the addresses of any posts that are useful.
Hope this helps.
Thank you for formally accepting my answer
Greg
0 comentarios
Más respuestas (0)
Ver también
Categorías
Más información sobre Define Shallow Neural Network Architectures en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!